Microglial Store-operated Calcium Signaling in Health and in Alzheimer’s Disease

2021 ◽  
Vol 17 (12) ◽  
pp. 1057-1064
Author(s):  
James G. McLarnon

The dysregulation of calcium signaling mechanisms in neurons has been considered a contributing factor to the pathogenesis evident in early-onset Alzheimer’s Disease (AD). However, considerably less is known concerning the possible impairment of Ca2+ mobilization in resident immune cell microglia. This review considers findings which suggest that a prominent pathway for non-excitable microglial cells, store-operated calcium entry (SOCE), is altered in the sporadic form of AD. The patterns of Ca2+ mobilization are first discussed with platelet-activating factor (PAF) stimulation of SOCE in adult, fetal and immortalized cell-line, human microglia in the healthy brain. In all cases, PAF was found to induce a rapid transient depletion of Ca2+ from endoplasmic reticulum (ER) stores, followed by a sustained entry of Ca2+ (SOCE). A considerably attenuated duration of SOCE is observed with ATP stimulation of human microglia, suggested as due to agonist actions on differential subtype purinergic receptors. Microglia obtained from AD brain tissue, or microglia treated with full-length amyloid-β peptide (Aβ42), show significant reductions in the amplitude of SOCE relative to controls. In addition, AD brain and Aβ42-treated microglia exhibit decreased levels of Ca2+ release from ER stores compared to controls. Changes in properties of SOCE in microglia could lead to altered immune cell response and neurovascular unit dysfunction in the inflamed AD brain.

Author(s):  
Tunahan Kirabali ◽  
Serena Rigotti ◽  
Alessandro Siccoli ◽  
Filip Liebsch ◽  
Adeola Shobo ◽  
...  

AbstractAn impairment of amyloid β-peptide (Aβ) clearance is suggested to play a key role in the pathogenesis of sporadic Alzheimer’s disease (AD). Amyloid degradation is mediated by various mechanisms including fragmentation by enzymes like neprilysin, matrix metalloproteinases (MMPs) and a recently identified amyloidolytic activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 cleavage of Aβ40 and Aβ42 results in the formation of a common Aβ34 intermediate which was found elevated in cerebrospinal fluid levels of patients at the earliest disease stages. To further investigate the role of Aβ34 as a marker for amyloid clearance in AD, we performed a systematic and comprehensive analysis of Aβ34 immunoreactivity in hippocampal and cortical post-mortem brain tissue from AD patients and non-demented elderly individuals. In early Braak stages, Aβ34 was predominantly detectable in a subset of brain capillaries associated with pericytes, while in later disease stages, in clinically diagnosed AD, this pericyte-associated Aβ34 immunoreactivity was largely lost. Aβ34 was also detected in isolated human cortical microvessels associated with brain pericytes and its levels correlated with Aβ40, but not with Aβ42 levels. Moreover, a significantly decreased Aβ34/Aβ40 ratio was observed in microvessels from AD patients in comparison to non-demented controls suggesting a reduced proteolytic degradation of Aβ40 to Aβ34 in AD. In line with the hypothesis that pericytes at the neurovascular unit are major producers of Aβ34, biochemical studies in cultured human primary pericytes revealed a time and dose dependent increase of Aβ34 levels upon treatment with recombinant Aβ40 peptides while Aβ34 production was impaired when Aβ40 uptake was reduced or BACE1 activity was inhibited. Collectively, our findings indicate that Aβ34 is generated by a novel BACE1-mediated Aβ clearance pathway in pericytes of brain capillaries. As amyloid clearance is significantly reduced in AD, impairment of this pathway might be a major driver of the pathogenesis in sporadic AD.


2021 ◽  
Vol 22 (4) ◽  
pp. 2022 ◽  
Author(s):  
Luis O. Soto-Rojas ◽  
Mar Pacheco-Herrero ◽  
Paola A. Martínez-Gómez ◽  
B. Berenice Campa-Córdoba ◽  
Ricardo Apátiga-Pérez ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
James G. McLarnon

The intactness of blood–brain barrier (BBB) is compromised in Alzheimer’s disease (AD). Importantly, evidence suggests that the perturbation and abnormalities appearing in BBB can manifest early in the progression of the disease. The disruption of BBB allows extravasation of the plasma protein, fibrinogen, to enter brain parenchyma, eliciting immune reactivity and response. The presence of amyloid-β (Aβ) peptide leads to the formation of abnormal aggregates of fibrin resistant to degradation. Furthermore, Aβ deposits act on the contact system of blood coagulation, altering levels of thrombin, fibrin clots and neuroinflammation. The neurovascular unit (NVU) comprises an ensemble of brain cells which interact with infiltrating fibrinogen. In particular, interaction of resident immune cell microglia with fibrinogen, fibrin and Aβ results in the production of reactive oxygen species (ROS), a neurotoxic effector in AD brain. Overall, fibrinogen infiltration through a leaky BBB in AD animal models and in human AD tissue is associated with manifold abnormalities including persistent fibrin aggregation and clots, microglial-mediated production of ROS and diminished viability of neurons and synaptic connectivity. An objective of this review is to better understand how processes associated with BBB leakiness to fibrinogen link vascular pathology with neuronal and synaptic damage in AD.


2021 ◽  
Vol 22 (7) ◽  
pp. 3654
Author(s):  
Luis O. Soto-Rojas ◽  
B. Berenice Campa-Córdoba ◽  
Charles R. Harrington ◽  
Andrés Salas-Casas ◽  
Mario Hernandes-Alejandro ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease, characterized histopathologically by intra-neuronal tau-related lesions and by the accumulation of amyloid β-peptide (Aβ) in the brain parenchyma and around cerebral blood vessels. According to the vascular hypothesis of AD, an alteration in the neurovascular unit (NVU) could lead to Aβ vascular accumulation and promote neuronal dysfunction, accelerating neurodegeneration and dementia. To date, the effects of insoluble vascular Aβ deposits on the NVU and the blood–brain barrier (BBB) are unknown. In this study, we analyze different Aβ species and their association with the cells that make up the NVU. We evaluated post-mortem AD brain tissue. Multiple immunofluorescence assays were performed against different species of Aβ and the main elements that constitute the NVU. Our results showed that there are insoluble vascular deposits of both full-length and truncated Aβ species. Besides, insoluble aggregates are associated with a decrease in the phenotype of the cellular components that constitute the NVU and with BBB disruption. This approach could help identify new therapeutic targets against key molecules and receptors in the NVU that can prevent the accumulation of vascular fibrillar Aβ in AD.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2021 ◽  
pp. 1-20
Author(s):  
Yang Yu ◽  
Yang Gao ◽  
Bengt Winblad ◽  
Lars Tjernberg ◽  
Sophia Schedin Weiss

Background: Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ 42), which is a key player in Alzheimer’s disease. Objective: Our aim was to clarify the subcellular locations of the amyloidogenic AβPP processing in primary neurons, including the intracellular pools of the immediate substrate, AβPP C-terminal fragment (APP-CTF) and the product (Aβ 42). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. Methods: Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional, three-channel imaging and image analyses. Results: The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes in soma. Lack of colocalization of Aβ 42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ 42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ 42 were localized in different compartments. Conclusion: These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.


Sign in / Sign up

Export Citation Format

Share Document