scholarly journals Impairment of PMCA Activity by Amyloid β-Peptide in Membranes from Alzheimer's Disease-Affected Brain and from Other Model Systems

2010 ◽  
Vol 98 (3) ◽  
pp. 170a
Author(s):  
Ana M. Mata ◽  
María Berrocal ◽  
Daniel Marcos ◽  
M. Rosario Sepúlveda
2012 ◽  
Vol 65 (5) ◽  
pp. 472 ◽  
Author(s):  
Daniel K. Weber ◽  
John D. Gehman ◽  
Frances Separovic ◽  
Marc-Antoine Sani

Growing evidence supports that interactions of the amyloid-β peptide Aβ(1–42) with neuronal cell membranes and copper are involved in Alzheimer’s disease pathogenesis. We report using solid-state NMR that the peptide significantly perturbed the phosphate and upper acyl chain region of bilayers comprising brain total lipid extract to cause domain segregation. Deep headgroup perturbations were also realized for palmitoyloleoylphospatidylcholine–cholesterol model systems; however, incorporating 10 % palmitoyloleoylphosphatidylserine or the ganglioside GM1 resulted in a more peripheral interaction. Cu2+ at a 1 : 7 molar ratio to peptide caused deeper penetration into model systems, but partially attenuated interactions with brain total lipid extract. Thioflavin T assay showed that bilayers affected amyloid formation in a mode dependant on lipid content, and was further modulated by addition of Cu2+. Our data support that ternary interactions between Cu2+, lipids and Aβ(1–42) may have significance in Alzheimer’s disease, and challenge the validity of model bilayers as substitutes for natural systems.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2021 ◽  
pp. 1-20
Author(s):  
Yang Yu ◽  
Yang Gao ◽  
Bengt Winblad ◽  
Lars Tjernberg ◽  
Sophia Schedin Weiss

Background: Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ 42), which is a key player in Alzheimer’s disease. Objective: Our aim was to clarify the subcellular locations of the amyloidogenic AβPP processing in primary neurons, including the intracellular pools of the immediate substrate, AβPP C-terminal fragment (APP-CTF) and the product (Aβ 42). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. Methods: Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional, three-channel imaging and image analyses. Results: The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes in soma. Lack of colocalization of Aβ 42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ 42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ 42 were localized in different compartments. Conclusion: These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.


Author(s):  
Priyanka Madhu ◽  
Debapriya Das ◽  
Samrat Mukhopadhyay

The accumulation of toxic soluble oligomers of the amyloid-β peptide (Aβ) is a key step in the pathogenesis of Alzheimer’s disease. There are mainly two conformationally distinct oligomers, namely, prefibrillar...


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Rita F. Belo ◽  
Margarida L. F. Martins ◽  
Liana Shvachiy ◽  
Tiago Costa-Coelho ◽  
Carolina de Almeida-Borlido ◽  
...  

2002 ◽  
Vol 30 (4) ◽  
pp. 525-529 ◽  
Author(s):  
B. Wolozin

Accumulation of a 40–42-amino acid peptide, termed amyloid-β peptide (Aβ), is associated with Alzheimer's disease (AD), and identifying medicines that inhibit Aβ could help patients with AD. Recent evidence suggests that a class of medicines that lower cholesterol by blocking the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), termed statins, can inhibit Aβ production. Increasing evidence suggests that the enzymes that generate Aβ function best in a high-cholesterol environment, which might explain why reducing cholesterol would inhibit Aβ production. Studies using both neurons and peripheral cells show that reducing cellular cholesterol levels, by stripping off the cholesterol with methyl-β-cyclodextrin or by treating the cells with HMG-CoA reductase inhibitors, decreases Aβ production. Studies performed on animal models and on humans concur with these results. In humans, lovastatin, an HMG-CoA reductase inhibitor, has been shown to reduce Aβ levels in blood of patients by up to 40%. The putative role of Aβ in AD raises the possibility that treating patients with statins might lower Aβ, and thereby either delay the occurrence of AD or retard the progression of AD. Two large retrospective studies support this hypothesis. Both studies suggest that patients taking statins had an approx. 70% lower risk of developing AD. Since statins are widely used by doctors, their ability to reduce Aβ offers a putative therapeutic strategy for treating AD by using medicines that have already been proved safe to use in humans.


Sign in / Sign up

Export Citation Format

Share Document