QSAR Studies to Predict Activity of HSP90 Inhibitors

Author(s):  
Vaishali M. Patil ◽  
Neeraj Masand ◽  
Satya P. Gupta ◽  
Brian S. J. Blagg

: Heat shock protein 90 (HSP90) is a multichaperone complex that mediates the maturation and stability of a variety of oncogenic signaling proteins. HSP90 has emerged as a promising target for the development of anticancer agents. Heterocyclic chemical moieties with HSP90 inhibitory activity were studied continuously during the last decades, and resulting data were applied by medicinal chemists to design and develop new drugs. Their structure-activity relationship (SAR) studies and QSAR models have been derived to assist the current drug development process. The QSAR models are obtained via multiple linear regression (MLR) and non-linear approaches. Interpretation of the reported model highlights the core template required to design novel, potent HSP90 inhibitors to be used as anticancer agents.

Author(s):  
Paulo Fernando da Silva Santos-Júnior ◽  
Martine Schmitt ◽  
João Xavier de Araújo-Júnior ◽  
Edeildo Ferreira da Silva-Júnior

: Trypanosomatidae family belongs to the Kinetoplastida order, which consists of obligatory parasites that affect plants and all classes of vertebrates, especially humans and insects. Among the heteroxenic parasites, Leishmania spp., Trypanosoma cruzi, and T. brucei are protozoa of most significant interest for medicinal chemistry, being etiological agents of Leishmaniasis, Chagas, and Sleep Sickness diseases, respectively. Currently, inefficient pharmacotherapy, especially in chronic phases and low selectivity towards parasite/host cells, justifies the need to discover new drugs to treat them effectively. Among other targets, the sterol 14α-demethylase (CYP51), an enzyme responsible for ergosterol's biosynthesis in Trypanosomatidae parasites, has received more attention in the development of new bioactive compounds. In this context, antifungal ravuconazole proved to be the most promising drug among this class against T. cruzi, being used in combined therapy with Bnz in clinic trials. Non-antifungal inhibitors, such as VFV and VNF, have shown promising results against T. cruzi and T.brucei, respectively, being tested in Bnz-combined therapies. Among the experimental studies involving azoles, compound (15) was found to be the most promising derivative, displaying an IC50 value of 0.002 µM against amastigotes from T. cruzi, in addition to being non-toxic and highly selective towards TcCYP51 (< 25 nM). Interestingly, imidazole analog (16) was active against infectious forms of these three parasites, demonstrating Ki values of 0.17, 0.02, and 0.36 nM for CYP51 from T. cruzi, T. brucei, and L. infantum. Finally, this review will address promising inhibitors targeting sterol 14α-demethylase (CYP51) from Trypanosomatidae parasites, highlighting SAR studies, interactions with this target, and recent contributions and advances in the field, as well.


2020 ◽  
Vol 17 (4) ◽  
pp. 467-478
Author(s):  
Jing Ouyang ◽  
Xiaoqian Liu ◽  
Yutao Zhao ◽  
Ying Liu ◽  
Hongzong Si ◽  
...  

Background: Heat Shock Protein 90(HSP90) inhibitors are involved in multiple anticancer pathways, which indicate many important novel molecular targets for cancer therapy. However, the characteristics of poor water solubility, liver toxicity and finite bioavailability of the present inhibitors limit clinical application. Hence, it is crucial to evaluate the characteristics of compounds and develop new drugs with hypotoxicity and high-bioactivity. Methods: Quantitative Structure-Activity Relationship (QSAR) has been an effective method for screening novel structures and predicting various properties of the synthesized compounds. Heuristic Method (HM) and Gene Expression Programming (GEP) algorithm were used to establish linear and nonlinear models severally. Results: The results showed that HM has good correlation coefficients of R2 and lower S2 as 0.79 and 0.29 for the training set and GEP has better values of 0.89 and 0.05, respectively. Conclusion: Both models have the capability of prediction but the nonlinear model developed by GEP has a more excellent predictive ability and indicates further optimization of the HSP90 inhibitors.


Author(s):  
Swanand Kulkarni ◽  
Kamalpreet Kaur ◽  
Vikas Jaitak

Background: Cancer is the world’s third deadliest disease. Despite the availability of numerous treatments, researchers are focusing on the development of new drugs lacking resistance and toxicity issues. Many newly synthesized drugs fail to reach clinical trials due to poor pharmacokinetic properties. Therefore, there is an imperative requisite to expand novel anticancer agents with in vivo efficacy. Objective: This review emphasizes synthetic methods, contemporary strategies used for the inclusion of oxazole moiety, mechanistic targets along with comprehensive structure-activity relationship studies to provide perspective into the rational design of highly efficient oxazole-based anticancer drugs. Methods: Literature related to oxazole derivatives engaged in cancer research is reviewed. This article gives a detailed account of synthetic strategies, targets of oxazole in cancer, including STAT3, Microtubules, G-quadruplex, DNA topoisomerases, DNA damage, Protein kinases, miscellaneous targets, in vitro studies, and some SAR studies. Results : Oxazole derivatives possess potent anticancer activity by inhibiting novel targets such as STAT3 and G-quadruplex. Oxazoles also inhibit tubulin protein to induce apoptosis in cancer cells. Some other targets such as DNA topoisomerase enzyme, protein kinases, and miscellaneous targets including Cdc25, mitochondrial enzymes, HDAC, LSD1, HPV E2 TAD, NQO1, Aromatase, BCl-6, Estrogen receptor, GRP-78, and Keap-Nrf2 pathway are inhibited by oxazole derivatives Many derivatives showed excellent potencies on various cancer cell lines with IC50 values in nanomolar concentrations. Conclusion: Oxazole is a five-membered heterocycle, with oxygen and nitrogen at 1 and 3 positions respectively. It is often combined with other pharmacophores in the expansion of novel anticancer drugs. In summary, oxazole is a promising entity to develop new anticancer drugs.


2018 ◽  
Vol 25 (30) ◽  
pp. 3560-3576 ◽  
Author(s):  
Massimo Tosolini ◽  
Paolo Pengo ◽  
Paolo Tecilla

Natural and synthetic anionophores promote the trans-membrane transport of anions such as chloride and bicarbonate. This process may alter cellular homeostasis with possible effects on internal ions concentration and pH levels triggering several and diverse biological effects. In this article, an overview of the recent results on the study of aniontransporters, mainly acting with a carrier-type mechanism, is given with emphasis on the structure/activity relationship and on their biological activity as antibiotic and anticancer agents and in the development of new drugs for treating conditions derived from dysregulation of natural anion channels.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


2020 ◽  
Vol 27 (34) ◽  
pp. 5654-5674 ◽  
Author(s):  
Daniel H. O’ Donovan ◽  
Yumeng Mao ◽  
Deanna A. Mele

The recent success of checkpoint blocking antibodies has sparked a revolution in cancer immunotherapy. Checkpoint inhibition activates the adaptive immune system leading to durable responses across a range of tumor types, although this response is limited to patient populations with pre-existing tumor-infiltrating T cells. Strategies to stimulate the immune system to prime an antitumor response are of intense interest and several groups are now working to develop agents to activate the Pattern Recognition Receptors (PRRs), proteins which detect pathogenic and damageassociated molecules and respond by activating the innate immune response. Although early efforts focused on the Toll-like Receptor (TLR) family of membrane-bound PRRs, TLR activation has been associated with both pro- and antitumor effects. Nonetheless, TLR agonists have been deployed as potential anticancer agents in a range of clinical trials. More recently, the cytosolic PRR Stimulator of IFN Genes (STING) has attracted attention as another promising target for anticancer drug development, with early clinical data beginning to emerge. Besides STING, several other cytosolic PRR targets have likewise captured the interest of the drug discovery community, including the RIG-Ilike Receptors (RLRs) and NOD-like Receptors (NLRs). In this review, we describe the outlook for activators of PRRs as anticancer therapeutic agents and contrast the earlier generation of TLR agonists with the emerging focus on cytosolic PRR activators, both as single agents and in combination with other cancer immunotherapies.


2019 ◽  
Vol 20 (3) ◽  
pp. 197-214 ◽  
Author(s):  
Isabel Sánchez-Crisóstomo ◽  
Eduardo Fernández-Martínez ◽  
Raquel Cariño-Cortés ◽  
Gabriel Betanzos-Cabrera ◽  
Rosa A. Bobadilla-Lugo

Background: Liver ailments are among the leading causes of death; they originate from viral infections, chronic alcoholism, and autoimmune illnesses, which may chronically be precursors of cirrhosis; furthermore, metabolic syndrome may worsen those hepatopathies or cause Non-alcoholic Fatty Liver Disease (NAFLD) that may advance to non-alcoholic steatohepatitis (NASH). Cirrhosis is the late-stage liver disease and can proceed to hepatocellular carcinoma (HCC). Pharmacological treatment options for liver diseases, cirrhosis, and HCC, are limited, expensive, and not wholly effective. The use of medicinal herbs and functional foods is growing around the world as natural resources of bioactive compounds that would set the basis for the development of new drugs. Review and Conclusion: Plant and food-derived sterols and triterpenoids (TTP) possess antioxidant, metabolic-regulating, immunomodulatory, and anti-inflammatory activities, as well as they are recognized as anticancer agents, suggesting their application strongly as an alternative therapy in some chronic diseases. Thus, it is interesting to review current reports about them as hepatoprotective agents, but also because they structurally resemble cholesterol, sexual hormones, corticosteroids and bile acids due to the presence of the steroid nucleus, so they all can share pharmacological properties through activating nuclear and membrane receptors. Therefore, sterols and TTP appear as a feasible option for the prevention and treatment of chronic metabolic-related liver diseases, cirrhosis, and HCC.


Author(s):  
Rajdeep Ray ◽  
Gautham Shenoy ◽  
N V Ganesh Kumar Tummalapalli

: Tuberculosis is one of the leading cause for deaths due to infectious disease worldwide. There is an urgent need for developing new drugs due to the rising incidents of drug resistance. Triazoles have previously been reported to show antitubercular activity. Various computational tools pave the way for a rational approach in understanding the structural importance of these compounds in inhibiting Mycobacterium tuberculosis growth. The aim of this study is to develop and compare two different QSAR models based on a set of previously reported molecules and use the best one for gaining structural insights in to the Triazole molecules. In the current study, two separate models were generated with CoMFA and CoMSIA descriptors respectively based on a dataset of triazole molecules showing antitubercular activity. Several one dimensional (1D) descriptors were added to each of the models and the validation results and the contour data generated from them were compared. The best model was studied to give a detailed understanding of the triazole molecules and their role in the antitubercular activity.The r2, q2, predicted r2 and SEP (Standard error of prediction) for the CoMFA model were 0.866, 0.573, 0.119 and 0.736 respectively and for the CoMSIA model the r2, q2, predicted r2 and SEP were calculated to be 0.998, 0.634, 0.013 and 0.869 respectively. Although both the QSAR models produced acceptable internal and external validation scores but the CoMSIA results were significantly better. The CoMSIA contours also provided a better match than CoMFA with most of the features of the active compound 30b. Hence, the CoMSIA model was chosen and its contours were explored for gaining structural insights on the triazole molecules. The CoMSIA contours helped us to understand the role of several atoms and groups of the triazole molecules in their biological activity. The possibilities for substitution in the triazole compounds that would enhance the activity were also analysed. Thus, this study paves the way for designing new antitubercular drugs in future.


2019 ◽  
Vol 19 (12) ◽  
pp. 1438-1453 ◽  
Author(s):  
Rafat M. Mohareb ◽  
Amr S. Abouzied ◽  
Nermeen S. Abbas

Background: Dimedone and thiazole moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. Thiazole derivatives are a very important class of compounds due to their wide range of pharmaceutical and therapeutic activities. On the other hand, dimedone is used to synthesize many therapeutically active compounds. Therefore, the combination of both moieties through a single molecule to produce heterocyclic compounds will produce excellent anticancer agents. Objective: The present work reports the synthesis of 47 new substances belonging to two classes of compounds: Dimedone and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7-tetrahydrobenzo[d]-thiazol-2-yl derivatives using the reaction of the 2-bromodimedone with cyanothioacetamide. Methods: The reaction of 2-bromodimedone with cyanothioacetamide gave the 4,5,6,7-tetrahydrobenzo[d]- thiazol-2-yl derivative 4. The reactivity of compound 4 towards some chemical reagents was observed to produce different heterocyclic derivatives. Results: A cytotoxic screening was performed to evaluate the performance of the new derivatives in six tumor cell lines. Thirteen compounds were shown to be promising toward the tumor cell lines which were further evaluated toward five tyrosine kinases. Conclusion: The results of antitumor screening showed that many of the tested compounds were of high inhibition towards the tested cell lines. Compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 21b, 21c, 20d and 21d were the most potent compounds toward c-Met kinase and PC-3 cell line. The most promising compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 20c, 20d, 21b, 21c and 21d were further investigated against tyrosine kinase (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 6c, 11b, 11d, 14b, 15c, and 20d were selected to examine their Pim-1 kinase inhibition activity the results revealed that compounds 11b, 11d and 15c had high activities.


Sign in / Sign up

Export Citation Format

Share Document