Ternary System of Bacogenins with Fulvic Acid and Hydrogenated Soy Lecithin: Preparation, Characterization and, In-Vivo Studies

Author(s):  
Kattamanchi Gnananath ◽  
Kalakonda Sri Nataraj ◽  
Battu Ganga Rao ◽  
Kolli Prabhanjan Kumar ◽  
Kommavari Chandrasekhar ◽  
...  

Aim: The aim of this study was to simultaneously enhance the solubility and stability of bacogenins by a ternary system comprised of hydrogenated soy lecithin and a third auxiliary substance, fulvic acid. Method: Both ternary and binary complexes were prepared using the solvent evaporation method and prepared binary and ternary systems were characterized by Fourier transform infrared technique, differential scanning calorimeter and scanning electron microscope. The entrapment efficacy in both binary and ternary system was calculated and the effect on the solubility, dissolution and stability of bacogenins (hydrolyzed bacoside rich extract) in 40% ethanol was found out. Furthermore, the prepared formulations were subjected to behavioural pharmacological studies. Results : FTIR, DSC, and SEM studies in totality confirmed the formation of binary and ternary complexes. Enhancement in solubility was observed, and the order of releasecharacteristics was found to be BHFS> BHSL>BHF> BH when the dissolution studies were carried out in 40% aqueous solution of ethanol. A significant improvement in the memory and antioxidant capacity was noticed in both binary, ternary complexes and fulvic acid treatment groups. Conclusion: The results revealed that the ternary complex could be a promising drug delivery system to improve the oral bioavailability of the bacogenins.

2011 ◽  
Vol 02 (03) ◽  
pp. 212-225 ◽  
Author(s):  
Renu Chadha ◽  
Sushma Gupta ◽  
Natasha Pathak ◽  
Geeta Shukla ◽  
D.V.S. Jain ◽  
...  

1993 ◽  
Vol 58 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Eman M. Shoukry

The formation constants of the binary and ternary complexes of palladium(II) with diethylenetriamine and amino acids as ligands have been determined potentiometrically at 25 °C in 0.1 M NaNO3 solution. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ∆logK values. The mode of chelation was ascertained by conductivity measurements.


2017 ◽  
Vol 16 (4) ◽  
pp. 125 ◽  
Author(s):  
Javed Ahamad ◽  
Naila Hassan ◽  
Saima Amin ◽  
Showkat R. Mir

<strong>Objective:</strong> Swertiamarin is a common secoiridoid found among the members of Gentianaceae. The present study aimed to establish the effectiveness of swertiamarin in achieving glucose homeostasis via inhibition of carbohydrate metabolizing enzymes by in-vitro and in-vivo studies. <strong>Materials and methods:</strong> Swertiamarin was obtained from dried whole plant samples of <em>Enicostemma littorale</em> Blume chromatographic fractionation over the silica gel column. Its effect on carbohydrate metabolizing enzymes viz., α-amylase and α-glucosidase were evaluated at 0.15 to 10 mg/mL in-vitro. The results were supplemented by anti-hyperglycemic studies in carbohydrate challenged mice pretreated with swertiamarin at a dose of 20 mg/kg body weight orally. <strong>Results:</strong> Swertiamarin was effective in inhibiting α-amylase and α-glucosidase with IC<em>50</em> values of 1.29±0.25 mg/mL and 0.84±0.11 mg/mL, respectively. The studies in starch and sucrose challenged mice showed that swertiamarin effectively restricted the increase in the peak blood glucose level (BGL). The increase in peak BGL was 49 mg/dL and 57 mg/dL only in the treatment groups compared to 70 mg/dL and 80 mg/dL in untreated groups after 30 min in starch and sucrose-fed mice, respectively. Acarbose (10 mg/kg b.w.) also produced significant (p&lt;0.01) blood glucose lowering response in both the models. <strong>Conclusion:</strong> Swertiamarin was effective in the achieving stricter glycemic control in carbohydrate challenged mice through the inhibition of carbohydrate metabolizing enzymes.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e18108-e18108
Author(s):  
Michael Driscoll Toboni ◽  
Barbara Blachut ◽  
Mary M Mullen ◽  
Jo'an Tankou ◽  
Hollie M Noia ◽  
...  

e18108 Background: Evidence suggests DNA repair is a therapeutic target in endometrial cancer (EC). Given this, we determined whether combination therapy with AVB500, an AXL inhibitor, could improve response in a uterine serous cancer (USC) model. Methods: Two USC cell lines (ARK1 & ARK4) were treated with AVB500 (Aravive Biologics, Houston, TX) in combination with the poly ADP ribose polymerase (PARP) inhibitor, olaparib. Colony forming assays were assessed after 4 days of treatment with either AVB500 alone, olaparib alone or combination treatment (olaparib + AVB500); colonies were stained and absorbance was obtained to calculate relative cell viability using Graph Pad Prism. Baseline homologous recombination (HR) status was determined after radiating cells with 10Gy and identifying RAD51 foci by immunofluorescence (IF). Cell lines were considered to be HR proficient if over 30% of the cells expressed RAD51 ( > 5 foci per cell). IF was conducted using a Leica confocal microscope and foci were quantified using FociCounter. In vivo studies were performed using NOD-SCID mice injected with 1 x 107 ARK1 cells intraperitoneally followed by treatment q3 days for a 14 and 21 day treatment period. Treatment groups were vehicle control, AVB500 alone, olaparib alone and olaparib with AVB500. Results: The absorbance for olaparib + AVB500 was significantly less than the olaparib only group in two assays involving ARK1s (0.417nm vs 0.756nm, p = 0.001; 0.320nm vs 0.620nm, p = 0.008) as well as in ARK4s (0.186nm vs 0.641nm, p = 0.003). The HR assay indicated both cell lines were HR proficient. After baseline HR proficiency was established, the cell lines were pretreated with AVB500 prior to radiation. When compared to cells without treatment with AVB500, IF showed a decrease in RAD51 foci per cell in ARK1 (2.7 vs 7.3, p = 0.0003) and ARK4 (6.3 vs 13.0, p = 0.0054). The proportion of ARK1 cells expressing RAD51 decreased to 21%, indicating HR deficiency. Lastly, NOD-SCID mice receiving olaparib + AVB500 had less tumor weight than those treated with olaparib alone (0.008g vs 0.138g, p = 0.002) and AVB500 alone (0.008g vs 0.145g, p = 0.0006) in a 14 day and a 21 day treatment period (0.212g vs 0.586g, p = 0.027 and 0.212 vs 0.494g, p = 0.005, respectively). Conclusions: HR proficient USC cell lines treated in vitro and in vivo with the combination of AVB500 and olaparib demonstrate an improved response to olaparib or AVB500 alone with a greater decrease in tumor burden. AVB500 appears to induce HR deficiency. Additional therapeutic and mechanistic experiments are ongoing.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Naciye Türkel

Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms ofΔlog10⁡K,log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution.


1976 ◽  
Vol 16 (81) ◽  
pp. 452
Author(s):  
MF Sharkey ◽  
RW Hodge ◽  
IF Davis ◽  
B Bogdanovic

Hay and silage treated with formaldehyde were compared with untreated hay and silage during in vivo studies of digestibility, and in growth studies where the forages were fed with and without barley to 6-month-old crossbred lambs. In the growth study there were 20 treatment groups (four forage types offered ad libitum x five barley levels 0, 100, 300, 500 and ad libitum g day-1). Sheep were fed for 6 and 12 weeks for groups fed silage and hay respectively following which animals were slaughtered. On a digested basis, barley contributed from 0 to 76 per cent of digested energy intake. Lamb growth rate varied between 0 and 150 g day-1 and was linearly related to intake of digested DM. Growth rates were above 100 g day-1 where barley constituted 60 to 70 per cent of this intake. Silage and hay with digestibilities of 62 to 65 per cent barely maintained sheep liveweights when fed as a sole diet. The sheep ate more hay than silage and treating the forage with formaldehyde did not significantly increase intake or growth rate.


2005 ◽  
Vol 70 (8-9) ◽  
pp. 1057-1066 ◽  
Author(s):  
Ayse Erçag ◽  
Tuba Sismanoglu ◽  
Suheyla Pura

The stability constants of the 1:1 binary complexes of Ni(II) and Co(II) with 3-amino-1,2,4-triazole (AT), leucine (Leu) and glutamic acid (Glu), and the 1:1:1 ternary complex of them and the protonation constants of the ligands were determined potentiometrically at a constant ionic strength of I = 0.10 mol L-1 (NaClO4) in aqueous solutions at 15.0 and 25.0 ?C. The thermodynamic parameters ?Gf0, ?Hf0 and ?Sf0 are reported for the formation reactions of the complexes. The enthalpy changes of all the complexations were found to be negative but the entropy changes positive. While the driving force for the formation of the Ni(II), Co(II) ? AT complexes is the enthalpy decrease, the driving force for the ternary complexes of AT is the entropy increase.


2020 ◽  
pp. 18-27
Author(s):  
Aliyu Mahmuda ◽  
Mansur Sani ◽  
Tukur Adamu ◽  
Aminu Sanda ◽  
Lauwali Galadima Gobir

In spite of the effectiveness of most anthelmintic agents in use, there is still need to identify more due to their unwanted side effects. Hence, the need to develop more that can be safe for all, cheap and available even in our localities. In the light of the current need for the use of traditional plants in the treatment of parasitic diseases, we have assessed the anthelmintic effect of Senna italica and aimed to investigate the therapeutic activity on Hymenolepis diminuta infection. We described in vivo studies evaluating the anthelmintic effects of the leaf extract at different concentrations in a murine infection model. Phytochemical analysis of the plant extract has shown the chemical components available in the compound. There was a significant (p<0.05) reduction in mean egg/gram (EPG) in one of the treatment groups which was observed to be similar to that of the treatment using conventional anthelmintic agent (Albendazole). A fluctuating but insignificant faecal worm-egg count was observed in the other experimental groups. The results obtained suggest a likelihood of its future use as an anthelmintic agent. Our next plan is to establish animal experiments with different types of helminth infection in order to have the full anthelmintic coverage by the agent, hopefully, before it will be validated for use as a human therapeutic agent.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Amal M. Al-Mohaimeed ◽  
Asma A. Alothman

Potentiometric titration method has been used to define stoichiometries and stability constants of ternary complexes of Cu(II) with duloxetine (D) and some selected amino acids (L). The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the HYPERQUAD program. The formation constants of the complexes formed in aqueous solutions and their concentration distributions as a function of pH were evaluated at 25°C and ionic strength 0.10 mol·L−1 NaNO3. Respective stabilities of ternary complexes have been determined compared with the corresponding binary complexes in terms of Δlog  K and %R.S. values. A novel binary and ternary duloxetine (D) drug with glycine and its Cu(II) complexes has been synthesized and characterized by several spectroscopic methods. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for both complexes. The elemental analyses and mass spectral data have justified the [Cu(D)(Gly)] and [Cu(D)Cl(H2O)] composition of complexes, where D = duloxetine and Gly = glycine. The EPR spectra of Cu(II) complexes support the mononuclear structures. Thermal properties and decomposition kinetics of Cu(II) complexes are investigated.


Sign in / Sign up

Export Citation Format

Share Document