Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease

2021 ◽  
Vol 20 ◽  
Author(s):  
Sadaf Abdi ◽  
Nima Javanmehr ◽  
Maryam Ghasemi-Kasman ◽  
Hanie Yavarpour Bali ◽  
Marzieh Pirzadeh

Background: Alzheimer’s disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. Objective: This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. Methodology: Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. Results: With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.

2021 ◽  
Vol 271 ◽  
pp. 03072
Author(s):  
Weixun Zhu

Alzheimer's disease is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. At present, conventional drugs have little effect on the prevention and treatment of AD, and the rapidly developing stem cell transplantation therapy provides a new direction for the treatment of neurodegenerative diseases. In this paper, we can conclude that stem cell therapies such as neural stem cells and mesenchymal stem cells have shown curative effects in the treatment of neurodegenerative diseases such as Alzheimer’s disease by analyzing existing stem cell research and analysis at this stage, and there will be huge applications in the future. prospect. Stem cells can secrete immunoregulatory factors through paracrine pathways to inhibit inflammation and reduce the accumulation of amyloid. Secrete neurotrophic factors to protect and promote nerve growth. In addition, stem cells can differentiate into neurons after transplantation, replacing damaged and dead nerve cells, and play an important role in rebuilding brain neural circuits and networks. This article analyzes and summarizes the possible ways of stem cell transplantation to treat Alzheimer's disease, which can provide new ideas and methods for future stem cell transplantation therapies.


2019 ◽  
Vol 15 ◽  
pp. P573-P573
Author(s):  
Sheng-Min Wang ◽  
Chang Uk Lee ◽  
Hyun Kook Lim

2019 ◽  
Vol 32 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Sheng-Min Wang ◽  
Chang-Uk Lee ◽  
Hyun Kook Lim

2021 ◽  
Vol 22 (18) ◽  
pp. 10151
Author(s):  
Hau Jun Chan ◽  
Yanshree ◽  
Jaydeep Roy ◽  
George Lim Tipoe ◽  
Man-Lung Fung ◽  
...  

Alzheimer’s disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.


2018 ◽  
Vol 2018 ◽  
pp. 1-30 ◽  
Author(s):  
Ankit Tandon ◽  
Sangh Jyoti Singh ◽  
Rajnish Kumar Chaturvedi

Alzheimer’s disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.


2019 ◽  
Vol 8 (1) ◽  
pp. 38-46
Author(s):  
Jigishu Ahmed ◽  
Hafizur Rahman

Alzheimer’s disease is one form of dementia affecting a significant proportion of the population. The etiology of this prevalent disease is currently unknown. It is postulated that AD can be treated by using stem cell-based therapies by replacing the lost neurons in the atrophic regions of the brain. For these novel therapies to be successful several sources of stem cells have been proposed, such as pluripotent stem cells as well as multipotent stem cells. Proof of concept in animal studies have shown that stem cells can grafted into the affected regions or delivered intravenously into affected parts of the brain. These experiments had improved cognition and memory performance in rodents. The promising results seen in animal models have increased interest in conducting clinical trials using the same technique. In the last 5 years, several treatments have reached phase II clinical trials.  


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Kyeong-Ah Kwak ◽  
Seung-Pyo Lee ◽  
Jin-Young Yang ◽  
Young-Seok Park

Alzheimer’s disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease’s pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.


Sign in / Sign up

Export Citation Format

Share Document