scholarly journals In Silico Evaluation of Interactions of Triterpenes in Momordica charantia on Proteins Involved in Angiogenesis

Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 2
Author(s):  
Büşra Sevim ◽  
Onur Eroğlu

Angiogenesis is important process that play active role in tumorigenesis. VEGFR-1, a member of the tyrosine kinase receptor family, is known as the receptor for VEGF ligands in tumor cells. SPARC protein has recently been shown to play a role in metastasis in various types of cancer. Momordica charantia; is a valuable plant used quite often in traditional medicine. Triterpenes from that plant appear to be promising in in vitro cancer studies. In this study; triterpenes in fruit and seed of M. charantia were selected according to literature. The 3D structure files of triterpenes were obtained from PubChem. The structure files of ligands were prepared with various programs and converted to the appropriate file format. X-ray diffraction structure files of proteins were obtained from RCSB PDB. These structure files were made suitable for molecular docking studies. Docking was performed with the AutoDock Tool (downloaded from autodock.scripps.edu/resources/adt), and the results were scored using the Vina program. According to the in silico analysis; It has been found that various triterpenes which can be obtained from M. charantia can co-inhibit VEGFR-1 and SPARC proteins. These results show that these triterpenes are promising in terms of new therapeutic routes for aggressive cancer therapy.

2020 ◽  
Author(s):  
Naruka Solomon Yakubu ◽  
Olanike Catherine Poyi ◽  
Ezikiel Olabisi Afolabi

Abstract Computer-aided drug design has been an effective strategy and approach to discover, develop, analyze, accelerate and economize design and development of drugs and biologically active molecules. A total of twelve analogues of chloroquine (CQ) and hydroxychloroquine (HCQ) were designed and virtually analyzed using PyRx software, Molinspiration, Swiss ADME, Swiss-Target Prediction software and ProTox-II-Prediction of toxicity platform. Based on the docking studies carried out using Autodock vina, five analogues; H-368 (-6.0 Kcal/mol), H-372 (--6.0 Kcal/mol), H-156 (-5.9 Kcal/mol), H-139 (-5.7 Kcal/mol), C-136 (-5.7 Kcal/mol) exhibited higher binding affinity compared to HCQ(-5.5 Kcal/mol), while all twelve analogues exhibited higher binding affinity compared to CQ (-4.5Kcal/mol). In silico analysis of toxicity profile of this analogues shows a lower potential to toxicity and a comparable activity on some major isoforms of cytochrome P450. But unlike the parent molecules, both H-139 and H-156 are substrates of P-glycoproteins (P-gp) which implies that these analogues possess high clearance and less pharmacokinetic-related drug-drug interactions compared to the parent molecules. Herein we propose these analogues as potential inhibitors or lead compounds against the coronavirus with a view of conducting more molecular dynamic simulations, synthesizing and conducting in vitro studies on them.


2020 ◽  
Vol 11 (2) ◽  
pp. 9629-9637

In ’today’s generation, Diabetes mellitus is a very common lifestyle-based disease in which an insufficient amount of insulin is produced, which results in a rise of glucose level in the body with frequent urination and patient feels thirsty and hungry. In our present work, we have used the alpha-glucosidase receptor against the natural plant product as a ligand for docking studies. For this in silico studies, various online tools, databases, and software were used. The proposed approaches were PDB, Molinspiration, Chemsketch, PyRx software, and many more. The binding scores were retrieved by PyRx software and no tumorigenicity, mutagenicity was there, and all parameters were in the desired range. The compounds used as ligands have shown energy minimization up to -6.7 to -8.7 kcal and can be further used as optimization, simulation, and in vitro and in vivo experimental validation.


Author(s):  
Nireeksha Nireeksha ◽  
Pavan Gollapalli ◽  
Sudhir Rama Varma ◽  
Mithra N. Hegde ◽  
N. Suchetha Kumari

AbstractLimiting the spread of virus during the recent pandemic outbreak was a major challenge. Viral loads in saliva, nasopharyngeal and oropharyngeal swabs were the major cause for droplet transmission and aerosols. Saliva being the major contributor for the presence of viral load is the major key factor; various mouthwashes and their combination were analyzed and utilized in health care centers to hamper the spread of virus and decrease viral load. The compositions of these mouthwashes to an extent affected the viral load and thereby transmission, but there is always a scope for other protocols which may provide better results. Here we evaluated the potential of antimicrobial peptide LL-37 in decreasing the viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through an in silico work and evidence from other studies. This narrative review highlighted a brief nonsystematic methodology to include the selected articles for discussion. Accessible electronic databases (Medline, Scopus, Web of Science, SciELO, and PubMed) were used to find studies that reported the salivary viral load of SARS-CoV-2 published between December 2019 and June 2021. The following keywords were utilized for brief searching of the databases: “saliva,” “viral load,” and “SARS-CoV-2.” Articles in English language, in vitro cell-line studies, ex vivo studies, and clinical trials explaining the viral load of SARS-CoV-2 in saliva and strategies to decrease viral load were included in this review. The search was complemented by manual searching of the reference lists of included articles and performing a citation search for any additional reviews. The antiviral potential of cationic host defense peptide LL-37 was evaluated using computational approaches providing in silico evidence. The analysis of docking studies and the display of positive interfacial hydrophobicity of LL-37 resulting in disruption of COVID-19 viral membrane elucidate the fact that LL-37 could be effective against all variants of SARS-CoV-2. Further experimental studies would be needed to confirm the binding of the receptor-binding domain with LL-37. The possibility of using it in many forms further to decrease the viral load by disrupting the viral membrane is seen.


Author(s):  
Shagufta Habib ◽  
Pawan Gupta ◽  
Sana Shafi Bhat ◽  
Jeena Gupta

Abstract. Citral, one of the main components of lemongrass oil (65–85%), is known to possess various medicinal properties like enhancing skin health and vision-improvement. It also acts as flavoring agent, used in perfumes and skin care products. The objective of this work was to elucidate the biological properties of citral at molecular level using an integrated in silico, in vitro and in vivo approaches. To elucidate this in silico molecular docking studies were performed with in vitro validation by DPPH scavenging activity, MTT assays, enzymatic assays and Chorio Allantoic Membrane (CAM) assay. The in silico analysis demonstrated the potential binding of citral with PPARγ ligand binding domain and vascular endothelial growth factor receptors (VEGFR-1 and VEGFR-2). Citral is already a proven anti-oxidant which is further confirmed by increased DPPH inhibition with increased citral concentration (IC50: 6.9 ± 1.68 μg/ml, p < 0.05). The results demonstrated that citral protect yeast cells from cytotoxic effects of hydrogen peroxide and also increase the activities of antioxidant enzymes like GST, SOD and LPO. It was also demonstrated to be cytotoxic to cancerous HeLa cells (IC50: 3.9 ± 0.38 μM, p < 0.01) and was found anti-angiogenic by CAM assay. This study highlights many important pharmaceutical properties of citral which can be explored further to increase its industrial applications.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bharti Rajesh Kumar Shyamlal ◽  
Manas Mathur ◽  
Dharmendra K. Yadav ◽  
Irina V. Mashevskaya ◽  
Mohamed El-Shazly ◽  
...  

Background: Several natural/synthetic molecules having structure similar to 1H-isochromen-1-ones have been reported to display promising antioxidants and platelet aggregation inhibitory activity. Isocoumarin (1H-2-benzopyran-1-one) skeleton, either whole or as a part of molecular framework, have been explored for their antioxidant or antiplatelet activities. Introduction: Based on literature, a new prototype i.e., 3-phenyl-1H-isochromen-1-ones based compounds have been rationalized to possess both antioxidant as well as antiplatelet activities. Consequently, no reports are available regarding its inhibition either by cyclooxygenase-1 (COX-1) enzyme or by arachidonic acid (AA)-induced platelet aggregation. This prompted us to investigate 3-phenyl-1H-isochromen-1-ones towards antioxidant and antiplatelet agents. Methods: The goal of this work to identify new 3-phenyl-1H-isochromen-1-ones based compounds via synthesis of a series of analogues and performing in vitro antioxidant as well as AA-induced antiplatelet activities and then, identification of potent compounds by SAR and molecular docking studies. Results: Out of all synthesized 3-phenyl-1H-isochromen-1-ones analogues, five compounds showed 7-folds to 16-folds highly potent antioxidant activities than ascorbic acid. Altogether, ten 3-phenyl-1H-isochromen-1-one analogues displayed antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Almost, all the 3-phenyl-1H-isochromen-1-one analogues exhibited potent AA-induced antiplatelet activity; few of them displayed 7-folds more activity as compared to aspirin. Further, in silico analysis validated the wet results. Conclusion: We disclose the first detailed study for the identification of 3-phenyl-1H-isochromen-1-one analogues as highly potent antioxidant as well as antiplatelet agents. The article describes the scaffold designing, synthesis, bioevaluation, structure-activity relationship and in silico studies of pharmaceutically privileged bioactive 3-phenyl-1H-isochromen-1-one class of heterocycles.


2018 ◽  
Vol 15 (3) ◽  
pp. 517-527
Author(s):  
Ritu Saxena ◽  
Prakash Chandra Mishra

Plasmodium falciparum is a causative agent of one of the most devastating disease, cerebral malaria. Absence of suitable vaccine and the emergence of multi drug resistant parasites hinder prevention of malaria disease worldwide. One of the most reliable approaches to control this disease is to develop antimalarial against drug targets which are specific for ubiquitous and necessary enzymes such as helicases. Helicases work in ATP dependent manner and help in unwinding of nucleic acids during replication, transcription and repair mechanism. In this study, in silico analysis and homology modeling method were used to characterize the physicochemical properties and 3D structure of PfBrr2 helicase. Suitable structure of different domains was validated using in silico tools and used for docking studies to understand protein-ligand interactions. Protein-protein interaction network of PfBrr2 was investigated to understand its function inside the parasite.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 18 (31) ◽  
pp. 2731-2740 ◽  
Author(s):  
Sandeep Tiwari ◽  
Debmalya Barh ◽  
M. Imchen ◽  
Eswar Rao ◽  
Ranjith K. Kumavath ◽  
...  

Background: Mycobacterium tuberculosis, Vibrio cholerae, and pathogenic Escherichia coli are global concerns for public health. The emergence of multi-drug resistant (MDR) strains of these pathogens is creating additional challenges in controlling infections caused by these deadly bacteria. Recently, we reported that Acetate kinase (AcK) could be a broad-spectrum novel target in several bacteria including these pathogens. Methods: Here, using in silico and in vitro approaches we show that (i) AcK is an essential protein in pathogenic bacteria; (ii) natural compounds Chlorogenic acid and Pinoresinol from Piper betel and Piperidine derivative compound 6-oxopiperidine-3-carboxylic acid inhibit the growth of pathogenic E. coli and M. tuberculosis by targeting AcK with equal or higher efficacy than the currently used antibiotics; (iii) molecular modeling and docking studies show interactions between inhibitors and AcK that correlate with the experimental results; (iv) these compounds are highly effective even on MDR strains of these pathogens; (v) further, the compounds may also target bacterial two-component system proteins that help bacteria in expressing the genes related to drug resistance and virulence; and (vi) finally, all the tested compounds are predicted to have drug-like properties. Results and Conclusion: Suggesting that, these Piper betel derived compounds may be further tested for developing a novel class of broad-spectrum drugs against various common and MDR pathogens.


2020 ◽  
Vol 17 (1) ◽  
pp. 40-50
Author(s):  
Farzane Kargar ◽  
Amir Savardashtaki ◽  
Mojtaba Mortazavi ◽  
Masoud Torkzadeh Mahani ◽  
Ali Mohammad Amani ◽  
...  

Background: The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server. Methods: For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina. Results: By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence. Conclusion: By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.


2019 ◽  
Vol 15 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Paritosh Shukla ◽  
Ashok Sharma ◽  
Leena Fageria ◽  
Rajdeep Chowdhury

Background: Cancer being a deadly disease, many reports of new chemical entities are available. Pyranopyrazole (PPZ) compounds have also been disclosed as bioactive molecules but mainly as antimicrobial agents. Based on one previous report and our interest in anticancer drug design, we decided to explore PPZs as anticancer agents. To the best of our knowledge, we found that a comprehensive study, involving synthesis, in-vitro biological activity determination, exploration of the mechanism of inhibition and finally in-silico docking studies, was missing in earlier reports. This is what the present study intends to accomplish. Methods: Ten spiro and eleven non-spiro PPZ molecules were synthesized by environment-friendly multicomponent reaction (MCR) strategy. After subjecting each of the newly synthesized molecules to Hep3b hepatocellular carcinoma cell lines assay, we selectively measured the Optical Density (OD) of the most active ones. Then, the compound exhibiting the best activity was docked against human CHK- 1 protein to get an insight into the binding affinities and a quick structure activity relationship (SAR) of the PPZs. Results: The two series of spiro and non-spiro PPZs were easily synthesized in high yields using microwave assisted synthesis and other methods. Among the synthesized compounds, most compounds showed moderate to good anticancer activity against the MTT assay. After performing the absorbance studies we found that the non-spiro molecules showed better apoptosis results and appeared to bind to DNA causing disruption in their structures. Finally, the docking results of compound 5h (having N,Ndimethylamino substituted moiety) clearly showed good binding affinities as predicted by our experimental findings. Conclusion: The paper describes a comprehensive synthesis, in-vitro and docking studies done on new PPZs. The newly synthesized series of spiro and non-spiro PPZs were found to possess antineoplasmic activity as evinced by the studies on hep3b cells. Also, the UV visible absorbance study gave clues to the possible binding of these molecules to the DNA. Docking studies corroborated well with the experimental results. Thus, these new molecules appear to be potential anticancer agents, but further studies are required to substantiate and elaborate on these findings.


Sign in / Sign up

Export Citation Format

Share Document