Resolving the Mystery of Ring Opening in the Synthesis of Benzo[d][1, 3]oxazin-4-one and Quinazolin-4(3H)-one

2019 ◽  
Vol 16 (11) ◽  
pp. 898-905
Author(s):  
Harun Patel ◽  
Rahul Pawara ◽  
Sanjay Surana

Quinazoline is the six-membered heterocyclic ring system reported for its versatile biological activities. This characteristic feature of quinazoline makes it a good template for a lead generation library. Ring opening is one of the major concerns in the synthesis of quinazolin-4(3H)-one that results in diamide formation. Here, alternative fusion strategy is reported, which is a time-saving and costeffective method to overcome the ring opening problem associated with the synthesis of benzo[ d][1,3]oxazin-4-one and quinazolin-4(3H)-one.

2021 ◽  
Vol 17 ◽  
Author(s):  
Nidhi Kala ◽  
Kalpana Praveen Rahate

: Triazole is the main five-membered Nitrogen-containing basic heterocyclic ring system reported for their biological activities and compounds with multiple pharmacophores, which fetch together acquaintance of a target with sympathetic types of the molecule that might interact with the target. In addition, healthy, adaptable, and scalable chemistry must be employed to achieve the task. This characteristic feature of triazole would make a good template for a lead cohort library. The current review article focuses on recent advancements in triazole moiety as an anti-cancer agent with their mechanism pathways of synthesized analogues.


2020 ◽  
Vol 36 (6) ◽  
pp. 1001-1015
Author(s):  
Nadia Ali Ahmed Elkanzi

Nitrogen containing synthetically and biologically important heterocyclic ring system namely pyrimidine possess both biological and pharmacological activities, and defend as aromatic six heterocyclic with 1and 3 nitrogen atom in ring. Preparation of pyrimidine via different methods offer its importance in fields of medicinal chemistry and Chemistry. Pyrimidines and their derivatives act as anti-inflammatory, anti-malaria, anti-tumor, cardiovascular agents, anti-neoplastic, anti-tubercular, anti- HIV, diuretic ,anti-viral, anti-microbial, ,analgesic .This review give light up on biological and pharmacological activities of pyrimidine nucleus.


1991 ◽  
Vol 56 (3) ◽  
pp. 1299-1301 ◽  
Author(s):  
Alan R. Katritzky ◽  
Wei Qiang Fan ◽  
John V. Greenhill ◽  
Peter J. Steel

1973 ◽  
Vol 26 (12) ◽  
pp. 2683 ◽  
Author(s):  
DJ Gale ◽  
JFK Wilshire

Indazole reacted readily with 4-fluoronitrobenzene and with 2-fluoro-5- nitro-benzonitrile to give the corresponding isomeric 1- and 2-nitroarylindazoles. The isomeric 2-(N-indazolyl)-5-nitrobenzonitriles behaved differently towards acid; the 1-derivative gave the corresponding 2-carboxylic acid whereas the 2-derivative gave a product which contains the hitherto unknown indolo[1,2-b]indazole ring system. ��� The decarboxylation of several 1-arylindazole-3-carboxylic acids in boiling quinoline gives not only the expected 1-arylindazole but also the product of heterocyclic ring fission, namely the isomeric N- arylanthranilonitrile. The proportion of this latter compound is particularly marked when the 1-aryl substituent carries an electron- withdrawing (nitro or chloro) group. If the 1-aryl substituent carries a nitro group, ring fission also occurs when the solid acid is heated above its melting point, but to a lesser extent than in refluxing quinoline. ��� The preparation of several of the 1-arylindazole-3-carboxylic acids was achieved by a route which had as its starting point the reaction of lead tetraacetate with an ethyl or methyl α-(arylhydrazono)phenylacet- ate to form the corresponding azoacetate. The failure of this reaction to occur when the arylhydrazone possessed an ortho-nitro group is discussed.


2020 ◽  
Author(s):  
Marat Korsik ◽  
Edwin Tse ◽  
David Smith ◽  
William Lewis ◽  
Peter J. Rutledge ◽  
...  

<p></p><p>We have discovered and studied a <i>tele</i>substitution reaction in a biologically important heterocyclic ring system. Conditions that favour the <i>tele</i>-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallography and isotope labelling experiments a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the <i>in vivo </i>active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.</p> <p> </p> <p>Archive of the electronic laboratory notebook with the description of all conducted experiments and raw NMR data could be accessed via following link <a href="https://ses.library.usyd.edu.au/handle/2123/21890">https://ses.library.usyd.edu.au/handle/2123/21890</a> . For navigation between entries of laboratory notebook please use file "Strings for compounds in the article.pdf" that works as a reference between article codes and notebook codes, also this file contain SMILES for these compounds. </p><br><p></p>


Author(s):  
Neelottama Kushwaha ◽  
C S Sharma

: Triazine is the six-membered heterocyclic ring containing three nitrogen which replaces carbon-hydrogen unit in the benzene ring. Based on nitrogen position present in the ring system, it is categorized in three isomeric forms i.e.1, 2, 3-triazine (vicinal triazine), 1, 2, 4-triazine (asymmetrical triazine or isotriazine) and 1, 3, 5-triazine (symmetrical or s-triazine or cyanidine). Triazines have weakly basic property. Its isomers have much weaker resonance energy than benzene structure, so nucleophilic substitution reactions are more preferred than electrophilic substitution reactions. Triazine isomers and their derivatives are known to play important roles possessing various activities in medicinal and agricultural fields such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal, antimalarial and antimicrobial agents.


2019 ◽  
Vol 16 (3) ◽  
pp. 342-368 ◽  
Author(s):  
Ramandeep Kaur ◽  
Yagyesh Kapoor ◽  
Sundeep K. Manjal ◽  
Ravindra K. Rawal ◽  
Kapil Kumar

The furo [2,3-b] indoline ring system is one of the most important structural units in various natural products. It has been known to have inherent biological activities and is utilized as a synthetic target for a number of natural compounds; therefore, this has contributed to a great demand for the growth of synthetic methods for this ring system. Most important compounds with furoindoline ring system are physovenine, madindoline A and B and makomotindoline etc. These compounds are well known to exhibit biological activity against different diseases such as glaucoma, cancer, cachexia, Castleman’s disease, rheumatoid arthritis, etc. The current article focuses on various synthetic approaches for furoindoline containing compounds and essential furoindoline moiety, such as oxindole-5-O-tetrahydropyranyl ether route etc., and various other diastereoand enantio- controlled approach in a very concise way.


1979 ◽  
Vol 34 (11) ◽  
pp. 1573-1575 ◽  
Author(s):  
Klaus Beelitz ◽  
Klaus Praefcke ◽  
Salo Gronowitz

Abstract UV irradiation of S-(3′-thienyl)2-chloro-thionicotinate (1) in benzene solution leads via dehydrohalogenation and cy clization in competition to α-cleavage to formation of thio-lactone 2 besides aldehyde 3 and disulphide 4. 2 contains a new heterocyclic ring system which has been confirmed by spectroscopic methods.


Sign in / Sign up

Export Citation Format

Share Document