2D QSAR Studies on a Series of Quinazoline Derivatives as Tyrosine Kinase (EGFR) Inhibitor: An Approach to Design Anticancer Agents

2010 ◽  
Vol 7 (8) ◽  
pp. 556-586 ◽  
Author(s):  
Malleshappa N. Noolvi ◽  
Harun M. Patel
2019 ◽  
Vol 15 (3) ◽  
pp. 265-276 ◽  
Author(s):  
Mariela Bollini ◽  
Ana M. Bruno ◽  
María E. Niño ◽  
Juan J. Casal ◽  
Leandro D. Sasiambarrena ◽  
...  

Background: Chagas disease affects about 7 million people worldwide. Only two drugs are currently available for the treatment for this parasite disease, namely, benznidazol (Bzn) and nifurtimox (Nfx). Both drugs have limited curative power in the chronic phase of the disease. Therefore, continuous research is an urgent need so as to discover novel therapeutic alternatives. Objective: The development of safer and more efficient therapeutic anti-T. cruzi drugs continues to be a major goal in trypanocidal chemotherapy. Method: Synthesis, 2D-QSAR and drug-like physicochemical properties of a set of quinazolinone and quinazoline derivatives were studied as trypanocidal agents. All compounds were screened in vitro against Trypanosoma cruzi (Tulahuen strain, Tul 2 stock) epimastigotes and bloodstream trypomastigotes. Results: Out of 34 compounds synthesized and tested, six compounds (5a, 5b, 9b, 9h, 13f and 13p) displayed significant activity against both epimastigotes and tripomastigotes, without exerting toxicity on Vero cells. Conclusion: The antiprotozoal activity of these quinazolinone and quinazoline derivatives represents an interesting starting point for a medicinal chemistry program aiming at the development of novel chemotherapies for Chagas disease.


RSC Advances ◽  
2015 ◽  
Vol 5 (103) ◽  
pp. 84810-84820 ◽  
Author(s):  
Shruti Satbhaiya ◽  
O. P. Chourasia

Importance of 2D QSAR in drug discovery, lower number of descriptors containing models shows best statistical parameters, number of involved scaffolds in models affects the statistical values.


2019 ◽  
Vol 19 (12) ◽  
pp. 1438-1453 ◽  
Author(s):  
Rafat M. Mohareb ◽  
Amr S. Abouzied ◽  
Nermeen S. Abbas

Background: Dimedone and thiazole moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. Thiazole derivatives are a very important class of compounds due to their wide range of pharmaceutical and therapeutic activities. On the other hand, dimedone is used to synthesize many therapeutically active compounds. Therefore, the combination of both moieties through a single molecule to produce heterocyclic compounds will produce excellent anticancer agents. Objective: The present work reports the synthesis of 47 new substances belonging to two classes of compounds: Dimedone and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7-tetrahydrobenzo[d]-thiazol-2-yl derivatives using the reaction of the 2-bromodimedone with cyanothioacetamide. Methods: The reaction of 2-bromodimedone with cyanothioacetamide gave the 4,5,6,7-tetrahydrobenzo[d]- thiazol-2-yl derivative 4. The reactivity of compound 4 towards some chemical reagents was observed to produce different heterocyclic derivatives. Results: A cytotoxic screening was performed to evaluate the performance of the new derivatives in six tumor cell lines. Thirteen compounds were shown to be promising toward the tumor cell lines which were further evaluated toward five tyrosine kinases. Conclusion: The results of antitumor screening showed that many of the tested compounds were of high inhibition towards the tested cell lines. Compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 21b, 21c, 20d and 21d were the most potent compounds toward c-Met kinase and PC-3 cell line. The most promising compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 20c, 20d, 21b, 21c and 21d were further investigated against tyrosine kinase (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 6c, 11b, 11d, 14b, 15c, and 20d were selected to examine their Pim-1 kinase inhibition activity the results revealed that compounds 11b, 11d and 15c had high activities.


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35820-35830 ◽  
Author(s):  
Hatem A. Abuelizz ◽  
Mohamed Marzouk ◽  
Ahmed H. Bakheit ◽  
Rashad Al-Salahi

HCV NS3/A4 protease inhibitors are one of the best therapeutic targets for the identification of novel candidate drugs. A series of benzo[g]quinazolines and their quinazoline analogues were evaluated for their HCV-NS3/4A inhibitory activities.


2017 ◽  
Vol 89 (6) ◽  
pp. 870-887 ◽  
Author(s):  
Cong-Jun Liu ◽  
Tao Zhang ◽  
Shu-Ling Yu ◽  
Xing-Jie Dai ◽  
Ya Wu ◽  
...  

Author(s):  
Vaishali M. Patil ◽  
Neeraj Masand ◽  
Satya P. Gupta ◽  
Brian S. J. Blagg

: Heat shock protein 90 (HSP90) is a multichaperone complex that mediates the maturation and stability of a variety of oncogenic signaling proteins. HSP90 has emerged as a promising target for the development of anticancer agents. Heterocyclic chemical moieties with HSP90 inhibitory activity were studied continuously during the last decades, and resulting data were applied by medicinal chemists to design and develop new drugs. Their structure-activity relationship (SAR) studies and QSAR models have been derived to assist the current drug development process. The QSAR models are obtained via multiple linear regression (MLR) and non-linear approaches. Interpretation of the reported model highlights the core template required to design novel, potent HSP90 inhibitors to be used as anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document