Expanding opportunities in treatment of leukemia by solid lipid nanoparticles

Author(s):  
Prarthna Yadav ◽  
Harshita Mishra ◽  
Manju Nagpal ◽  
Geeta Aggarwal

Background: Leukemia is a severe type of blood cancer that involves an abnormal proliferation of blood-forming cells. Its conventional treatment faces many challenges, including resistance, lack of specificity and high unwanted toxicity of drugs. Nano drug delivery systems help in overcoming these challenges by delivering the drug to the target site actively or passively. Solid lipid nanoparticles are gaining popularity because they reduce unwanted toxicity, are biocompatible, increase bioavailability and are versatile in terms of incorporated agents (hydrophilic as well as lipophilic drugs, genes, enzymes, etc.). Purpose: The aim of this review is to discuss recent advancements in anti-leukemic therapy utilizing Solid lipid nanoparticles (SLNs) as successful carriers in enhancing efficiency of the treatment and bioavailability of the incorporated drug along with overcoming multi drug resistance. Methods: This review represents the existing literature on the applications of SLNs in anti-leukemic therapy. A qualitative literature review has been done for this purpose. We performed keyword research in popular databases such as Google Scholar, Wiley, Elsevier, Scopus, Google patent and PubMed. Only articles published in English and from reputed journals from specific fields were considered. Benchmark studies having major importance from 2000 to 2020 were selected to follow the progress in the field across the globe. Results: This article improves the understanding of role of SLNs in treatment of leukemia. Traditional anti-leukemic therapy involves many challenges, including resistance, lack of specificity and high unwanted toxicity of drugs. SLNs are emerging as a better alternative to conventional delivery systems as they can reduce unwanted toxicity, are biocompatible, and can provide active as well as passive molecular targeting. Conclusion: SLNs provide several advantages in drug delivery for leukemia including enhancement of efficiency and bioavailability and reduction of toxicity by virtue of their small size, lipid core, non-dependency on organic solvents and versality in terms of incorporated drugs.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 191 ◽  
Author(s):  
Vijay Mishra ◽  
Kuldeep Bansal ◽  
Asit Verma ◽  
Nishika Yadav ◽  
Sourav Thakur ◽  
...  

Solid lipid nanoparticles (SLNs) are nanocarriers developed as substitute colloidal drug delivery systems parallel to liposomes, lipid emulsions, polymeric nanoparticles, and so forth. Owing to their unique size dependent properties and ability to incorporate drugs, SLNs present an opportunity to build up new therapeutic prototypes for drug delivery and targeting. SLNs hold great potential for attaining the goal of targeted and controlled drug delivery, which currently draws the interest of researchers worldwide. The present review sheds light on different aspects of SLNs including fabrication and characterization techniques, formulation variables, routes of administration, surface modifications, toxicity, and biomedical applications.


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 860
Author(s):  
Raneem Jnaidi ◽  
António José Almeida ◽  
Lídia M. Gonçalves

Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor. In fact, tumor recurrence usually appears a few months after surgical resection and chemotherapy, mainly due to many factors that make GBM treatment a real challenge, such as tumor location, heterogeneity, presence of the blood-brain barrier (BBB), and others. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) represent the most promising carriers for therapeutics delivery into the central nervous system (CNS) owing to their inherent ability to cross the BBB. In this review, we present the main challenges in GBM treatment, a description of SLNs and NLCs and their valuable role as drug carriers in GBM treatment, and finally, a detailed description of all modification strategies that aim to change composition of SLNs and NLCs to enhance treatment outcomes. This includes modification of SLNs and NLCs to improve crossing the BBB, reduced GBM cell resistance, target GBM cells selectively minimizing side effects, and modification strategies to enhance SLNs and NLCs nose-to-brain delivery. Finally, future perspectives on their use are also be discussed, to provide insight about all strategies with SLNs and NLCs formulation that could result in drug delivery systems for GBM treatment with highly effective theraputic and minimum undesirable effects.


2016 ◽  
Vol 10 (1) ◽  
pp. 85-95
Author(s):  
Tesfaye Gabriel

Background: Acne vulgaris (commonly called acne) is the most prevalent skin complication of different causes with a higher prevalence in adolescents. Topical administration is used as first-choice therapy in mild acne, whereas for moderate and severe acne, systemic administration is required in addition to topical therapy. Mechanisms by which treatments act are: normalizing shedding into the pore to prevent obstruction, destruction of P.acnes, suppression of inflammation, and hormonal management. Objective: This review focuses on the novel drug delivery systems displaying a strong ground for topical treatment of acne in order to enhance the therapeutic performance of the topical antiacne agents with improved patience compliance and a concomitant reduction in the side effects. Method: This literature review was obtained from electronic search on Pubmed, Google Scholars, Researchgate, Scimago, CABI, DOAJ, CiteFactor, GLOBAL HEALTH, Universal Impact Factor, Hinari among many others and also search was conducted on individual journals and manuals. Conclusion: Amongst various novel drug delivery systems, vesicular carriers like liposomes and niosomes, micro sponges, microemulsions, solid lipid nanoparticles, hydrogels, emulsifier-free formulations, fullerenes and aerosol foams have been reported as novel topical administration of antiacne drugs. Liposomes have been extensively explored and their ability to optimize and improve topical therapy has been proved by several clinical trials. Microemulsions, microsponges, solid lipid nanoparticles and hydrogels also exhibit a tremendous potential for commercialization.


Author(s):  
Mahsa Mazdaei ◽  
Kofi Asare-Addo

The application of nanotechnology indrug delivery systems (DDS) has been researched widely and seen an advancementover the past three decades. Since the 1970s, nanoparticles were primarilyutilised in vaccine deliveries and cancer chemotherapy. In more recent years,they have been found to hold promises for broader applications such as inproteins and therapeutic gene delivery systems. To date, there have been only ahandful of nanocarrier-loaded drugs commercialised into the pharmaceuticalmarket. More research is thus needed to facilitate a breakthrough of theseproducts into the current market. This mini-review mainly focuses on four typesof commonly utilised organic nanocarriers including micelles, compactpolymerics, solid-lipid nanoparticles and liposomal vesicles and discusses theprogress and some challenges associated with these nanoparticles (NP). 


Author(s):  
Harish Dureja ◽  
Sunil Khatak

Tuberculosis (TB) is a more prevalent granulomatos bacterial infection, which remains the world’s second most common cause of death due to infections of Mycobacterium tuberculosis (M.Tuberculosis). A number of characteristics of mycobacterium makes there disease chronic and necessitate prolonged treatment. The emergence of multi-drug-resistance (MDR) stains of M.Tuberculosis makes its necessary for the development of effective combinations of either first-line or second-line drugs or discovery of new safe and effective drug molecules and also implements other modalities of treatment. A number of novel carrier-based drug delivery systems incorporating the traditional and newer anti-tubercular agents have been shown incredible promise to target the site of action, reduce dosing frequency and enhance drug bioavailability with the objective of improving patient compliance. Nanoparticulate system have unique and comparatively more effective drug delivery carriers, including liposomal-mediated drug delivery, polymeric nanoparticles/microparticles, solid lipid nanoparticles, nanosuspensions, nanoemulsions, niosomes, dendrimers, Metal/cyclodextrin inclusion complexes and other nanosystems exploiting the extraordinary properties of matter at the nanoscale. Nanoparticles shown significant improvements in diagnosis, treatment and prevention and provide the flexibility of selecting the invasive and non-invasive route of delivery for chemotherapy of tuberculosis. This manuscript have been made to highlight and overviews the present WHO estimated burden of tuberculosis globally, recent discovery of safe and effective newer anti-tubercular drug moleculesfor MDR and XDR tuberculosis, first and second line anti-tubercular drugs loaded novel nanoparticle carriers for chemotherapy and development of solid lipid nanoparticles as an alternative drug carriers for tubercular chemotherapy.  


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (04) ◽  
pp. 5-25
Author(s):  
N.G.N Swamy ◽  
Z Abbas ◽  

Numerous attempts have been made to improve the bioavailability from ocular drug delivery systems and to prolong the residence time of drugs applied topically onto the eye. Conventional ocular drug delivery systems such as eye drops and ointments are inefficient, whereas, systemic administration requires high doses which may result in significant toxicity. Therefore, a need arises to develop novel drug delivery carrier systems capable of increasing ocular bioavailability and decreasing both local and systemic cytotoxicity. Nanotechnology is expected to revolutionize ocular drug delivery. Solid lipid nanoparticles (SLNs) introduced in 1991 represent an alternative carrier system to traditional colloidal carriers, such as emulsions, liposomes and polymeric micro- and nanoparticles. SLNs do not show biotoxicity as they are prepared from physiological lipids and are ideal ocular drug delivery systems as they can enhance the corneal absorption of drugs and improve the ocular bioavailability of both hydrophilic and lipophilic drugs. SLNs have another advantage of allowing autoclave sterilization, an indispensible step in the formulation of ocular preparations. In this review a special attention has been given to the nature of lipids and surfactants commonly used for SLNs production. This article also reviews in detail the various fabrication methods, characterization, sterilization, and stabilization techniques for SLNs. In-vitro and in-vivo methods to study the drug release profile from SLNs have also been mentioned. A summary of previous studies involving the use of SLNs in ocular drug delivery is provided, along with a critical evaluation of SLNs as a potential colloidal ocular drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document