Optimization of microwave-assisted extraction of carotenoids from Citrus clementina peels

2021 ◽  
Vol 18 ◽  
Author(s):  
Ahcene Kadi ◽  
Hafid Boudries ◽  
Mostapha Bachir-bey ◽  
Mohand Teffane ◽  
Abdeslem Taibi ◽  
...  

Background: Citrus fruits, especially clementines, are among the most consumed fruits in the world. Clementine consists of pulp (endocarp) and peel (epicarp) which are rich in carotenoids. After using fruit pulp, peels are usually discarded as waste; the valorization of the latter in the recovery of its beneficial components, mainly carotenoids, may seem to be important. Objective: The main objective of this study is to determine the optimal conditions allowing the extraction of a high carotenoids yield from clementine peels. Methods: The microwave-assisted extraction method (MAE) was applied for extraction of total carotenoids from Citrus clementina peels, and the response surface methodology (RSM) was used to investigate the influence of extraction parameters, including hexane concentration, microwave power, irradiation time, and solvent to solid ratio, on the extraction yield, then the results were modeled using a second order regression. Total carotenoids yield of clementine peel extract obtained under optimal microwave-assisted extraction conditions was compared to extracts performed using two conventional extraction methods (maceration and Soxhlet). Results: The optimal conditions for microwave-assisted extraction were 68% of hexane concentration using 561 W of microwave power during 7.64 min of irradiation time, 43 ml/g of solvent-to-solid ratio using two successive extractions. Under optimized conditions of microwave-assisted extraction, the recovery of carotenoid content was 186.55 µg/g dry matter (DM), which was higher than that obtained by the two conventional methods, maceration extraction (ME; 160.53 µg/g DM) and Soxhlet extraction (SE; 162.68 µg/g DM). Conclusion: From this study, it can be concluded that microwave-assisted extraction is an efficient method for carotenoid recovery and considering its high yield in reduced time, it could be recommended for extraction of these bioactive compounds from clementine peels.

2012 ◽  
Vol 518-523 ◽  
pp. 430-435 ◽  
Author(s):  
Hai Rong Guo ◽  
Shao Ying Ma ◽  
Xiao Fei Wang ◽  
Er Fang Ren ◽  
Yuan Yuan Li

Microwave-assisted extraction (MAE) was used to extract chlorophylls from filter mud. Ethanol was used as the solvent. The optimal conditions for the MAE of chlorophylls were concluded from the study as the irradiation time, 50 s, the ratio of liquid to solid, 8:1 (mL/g), the extraction temperature, 40 °C, and the extraction time, 60 min. Compared with conventional extraction, the MAE of chlorophylls from the filter mud was more effective. The extraction time for MAE was 60 min with 0.277 mg/g chlorophyll yield, while conventional extraction needed 240 min with only about 0.259 mg/g chlorophyll yield. The Ultraviolet Absorption Spectra of the extracted chlorophylls showed that there was a strong absorption peak at about 663 nm. C=N, Mg-N and C-N was not seen existed from the infrared spectroscopy probably because that the mixed extracts were not purified and the chlorophyll content was less.


2018 ◽  
Vol 69 (3) ◽  
pp. 260 ◽  
Author(s):  
H. N. Özbek ◽  
D. Koçak Yanık ◽  
S. Fadıloğlu ◽  
H. Keskin Çavdar ◽  
F. Göğüş

Soxhlet and microwave assisted extraction (MAE) methods were used to obtain non-polar compounds from pistachio hull. MAE parameters (liquid to solid ratio, microwave power, and extraction time) were studied to obtain maximum extraction yield. The optimal conditions were found to be liquid to solid ratio of 15:1 (v/w), microwave power of 250 W and extraction time of 12.5 min. The extraction yields were 9.81 and 9.50% for MAE and Soxhlet methods, respectively. The total phenolic content, antioxidant activity and tocopherol content of the extract obtained by MAE was found to be significantly higher than those of the Soxhlet extract (p < 0.05). The results showed that the extract contained α-tocopherols (567.65 mg/kg) and oleic acid (48.46%) as the major tocopherols and fatty acids. These findings propose that hull extracts can be considered as a good source of natural bioactive compounds and MAE can be a good alternative to the traditional Soxhlet method.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 678
Author(s):  
Ao Shang ◽  
Min Luo ◽  
Ren-You Gan ◽  
Xiao-Yu Xu ◽  
Yu Xia ◽  
...  

In this study, the effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.) were studied and the antioxidants in the extract were identified. The influences of ethanol concentration, solvent-to-sample ratio, microwave power, extraction temperature and extraction time on Trolox equivalent antioxidant capacity (TEAC) value, ferric reducing antioxidant power (FRAP) value and total phenolic content (TPC) were investigated by single-factor experiments. The response surface methodology (RSM) was used to study the interaction of three parameters which had significant influences on antioxidant capacity including ethanol concentration, solvent-to-sample ratio and extraction time. The optimal conditions for the extraction of antioxidants from sweet tea were found as follows—ethanol concentration of 58.43% (v/v), solvent-to-sample ratio of 35.39:1 mL/g, extraction time of 25.26 min, extraction temperature of 50 ℃ and microwave power of 600 W. The FRAP, TEAC and TPC values of the extract under the optimal conditions were 381.29 ± 4.42 μM Fe(II)/g dry weight (DW), 613.11 ± 9.32 μM Trolox/g DW and 135.94 ± 0.52 mg gallic acid equivalent (GAE)/g DW, respectively. In addition, the major antioxidant components in the extract were detected by high-performance liquid chromatography with diode array detection (HPLC-DAD), including phlorizin, phloretin and trilobatin. The crude extract could be used as food additives or developed into functional food for the prevention and management of oxidative stress-related diseases.


2014 ◽  
Vol 675-677 ◽  
pp. 1634-1637 ◽  
Author(s):  
Cong Liang Huang

In this study, microwave-assisted extraction (MAE) was employed for the extraction of polysaccharides from Radix Astragali (PRA). The extraction parameters that influenced the extraction yield of PRA were optimized by orthogonal test design. The results showed that the optimal MAE conditions were as followings: liquid-solid ratio of 18 ml/g, irradiation time of 8 min, irradiation power of 300 W and extraction temperature of 65°C, while extraction yield of PRA was 8.39 %. The developed MAE method provided a good alternative for the extraction of PRA.


2021 ◽  
Vol 17 (1) ◽  
pp. 33-38
Author(s):  
Noorzetty Akhtar Zakaria ◽  
Roshanida A. Rahman ◽  
Dayang Norulfairuz Abang Zaidel ◽  
Daniel Joe Dailin ◽  
Mazura Jusoh

Pineapple peel has the potential to become one of the sources for pectin production due to the high content of pectin in its dietary fibre composition. Pectin is used as food thickener, emulsifier, stabiliser and gelling agent in food industry. The conventional extraction process with long operating hours at high temperature has been identified to cause thermal degradation of pectin molecules. Microwave technology application in pectin extraction has shown high potential to expedite the extraction process and produce higher yield. Therefore, this research was intended to investigate the effect of various factors (irradiation time, pH, temperature, microwave power and solid-to-solvent (S/S) ratio) of microwave-assisted extraction (MAE) on the pineapple peel pectin (PPP) yield. Pectin extracted was then analysed for its dry weight yield percentage and degree of esterification (DE). It was shown that the pectin yield was significantly affected by pH, S/S ratio and microwave power. From this study, no significant effect of irradiation time was observed from 2.5 min until 20 min to the yield of pectin, thus longer time of extraction is not necessary in MAE. The highest yield of PPP obtained was in the range of 2.27 to 2.79% w/w at pH 2.0 and S/S ratio of 1:20. The result of DE (63.93 ± 0.30%) indicated that PPP is categorized in high methoxyl pectin (HMP) pectin type because the DE values were greater than 50%. This study showed that MAE is highly potential for extraction of high yield of PPP.


Author(s):  
Changlu Wang ◽  
Zhenjing Li ◽  
Fengjuan Li ◽  
Mianhua Chen ◽  
Yurong Wang ◽  
...  

Abstract In this study Microwave assisted extraction (MAE) was employed to extract total flavonoids (TF) from the Toona sinensis leaves (TSL). Single factor experiments to evaluate the effects of the process parameters (extraction duration, solvent-solid ratio, ethanol volume fraction, and extraction times) on TF yield of TSL was performed, and response surface methodology (RSM) were used to optimize the extraction parameters. The analysis of variance indicated that the linear coefficients extraction duration, the quadratic terms of extraction duration and solvent-solid ratio, had highly significant effects on the TF yield (P<0.01). And, the quadratic terms of ethanol volume fraction had significant effects on the TF yield (P<0.05). The optimal conditions to obtain the maximum TF yield from TSL were extraction duration 85s, solvent-solid ratio (v/w, mL/g) 20, ethanol volume fraction 50%, microwave power 700 W, and repeated extraction two times. Under these optimal conditions, the TF yield was up to 2.39%. The analysis of variance (ANOVA) and validation test indicated that the method is useful and reliable.


2019 ◽  
Vol 5 (1) ◽  
pp. 16-28
Author(s):  
Oluwaseun Ruth Alara ◽  
Nour Hamid Abdurahman ◽  
John Adewole Alara

Vernonia cinerea is one of the medicinal plants with several potentials for treating different ailments. In the present study, Microwave-assisted extraction (MAE) was employed in extracting phenolics compounds from this plant. However, different factors that affect this extraction method in the recovery of phenolics compounds abound, these factors need to be screened to determine actual contributing factor in order to minimize cost. Irradiation time (1-5 min), ethanol concentration (20-60% v/v), microwave power (40-80 W), extraction temperature (40-80 oC), and feed/solvent (1:10 - 1:18 g/mL) have been screened using two-factorial design for the recoveries of phenolic compounds from V. cinerea leaves. The results obtained in this study indicated that only microwave power, ethanol concentration, irradiation time and feed/solvent contributed to recoveries of total phenolic content (TPC) and total flavonoid content (TFC) from V. cinerea leaves. Thus, these factors at these ranges can be further optimized to obtain optimal yields of phenolic compounds from V. cinerea leaves.


2021 ◽  
Vol 34 (1) ◽  
pp. 140-146
Author(s):  
Piyush Kashyap ◽  
Charanjit Singh Riar ◽  
Navdeep Jindal

Microwave-assisted extraction (MAE) was investigated to extract polyphenols from sohiong (Prunus nepalensis) fruit. The effect of process variables (solvent concentration, solvent-solid ratio, microwave power and time) on yield and total phenol content (TPC) of fruit extract were studied using response surface methodology. The best conditions for extraction of polyphenolic extract were solvent concentration (55.17%), solvent-solid ratio (26.09%), microwave power (500 W) and time (238 s). Under optimized MAE conditions, the yield, TPC, DPPH and FRAP of sohiong extracts were 47.25%, 146.61 mgGAE/g, 89.02% and 0.58 mgAAE/g, respectively. Furthermore, MAE showed higher yield, TPC and antioxidant activity as compared to conventional solvent extraction (CSE) (28.13%, 96.56 mgGAE/g, 74.87% (DPPH) and 0.54 mgAAE/g (FRAP)), respectively. Thus, MAE is a potential alternative for polyphenols extraction from sohiong fruit and as a rich source of antioxidant compounds, it can be a potent ingredient for pharmaceuticals and food industries.


Sign in / Sign up

Export Citation Format

Share Document