Sensitivity Enhancement of Pre-capillary Chelation Method for the Separation of Metal ions: Experimental and DFT study

2020 ◽  
Vol 16 ◽  
Author(s):  
Suvardhan Kanchi ◽  
Myalowenkosi I. Sabela ◽  
Mohd Shahbaaz ◽  
Krishna Bisetty

Background: Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Sensitivity enhancement and selective pre-capillary chelation and separation method was developed for the simultaneous determination of metal ions by capillary zone electrophoresis (CZE) with UV light as a detector. Method: This method was based on chelation of metal ions such as nickel(II), cobalt(II), lead(II) and zinc(II) with 2.0 mM Ammonium Morpholine-4-Carbodithioate (AMC) at pH 7.2 prior to analysis in 2.0 mM of phosphate buffer. Results: Different optimal conditions such as effect of pH, concentration of AMC, applied voltage, nature of the buffer solution and excipient ions were investigated to enhance the sensitivity of the method. Conclusion: The developed method separate nickel(II), cobalt(II), lead(II) & zinc(II) in less than 5 min with good reproducibility and recoveries ranging from 93.50 to 100.00 % in agricultural materials. Furthermore, the interaction and Density Functional Theory (DFT) based studies reveal that the metal ions form relatively stable complexes with AMC and follows the experimental trend performed with CZE.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1737 ◽  
Author(s):  
Marisela Martinez-Quiroz ◽  
Xiomara E. Aguilar-Martinez ◽  
Mercedes T. Oropeza-Guzman ◽  
Ricardo Valdez ◽  
Eduardo A. Lopez-Maldonado

This paper presents the synthesis and evaluation of physicochemical behavior of a new series of N-alkyl-bis-o-aminobenzamides (BOABs) in aqueous solution. The study was targeted to the complexing capacity of five metal ions (Fe2+, Cu2+, Cd2+, Hg2+ and Pb2+) of environmental concern as the medullar principle of a liquid phase sensor for its application in the determination of these metal ions due to its versatility of use. Molecular fluorescence, UV-visible and Zeta potential were measured for five BOABs and the effect of alkyl groups with different central chain length (n = 3, 4, 6, 8 and 10) on physicochemical performance determined. The results have shown that these derivatives present higher sensibility and selectivity for Cu2+ even in the presence of the other metal ions. An additional application test was done adding a pectin (0.1 wt %) solution to the BOAB-Cu+2 complex to obtain a precipitate (flocs) as a potential selective separation process of Cu from aqueous solution. The solid was then lyophilized and analyzed by SEM-EDS, the images showed spheric forms containing Cu+2 with diameter of approximately of 8 μm and 30 wt %.


2021 ◽  
Vol 546 ◽  
pp. 149145
Author(s):  
Bo Zheng ◽  
Xianxian Chu ◽  
Han Li ◽  
Xiuli Wu ◽  
Xin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document