Eremurus spectabilis, Rich Source of Isoorientin: Isolation, Quantification and Anti-Cancer Activity on SH-SY5Y Neuroblastoma Cells

2018 ◽  
Vol 14 (6) ◽  
pp. 578-585
Author(s):  
Esen Sezen Karaoglan ◽  
Gulsah Gundogdu ◽  
Mucahit Secme ◽  
Onur Senol ◽  
Fatma Demirkaya Miloglu ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1377
Author(s):  
Murat Bingul ◽  
Greg M. Arndt ◽  
Glenn M. Marshall ◽  
Belamy B. Cheung ◽  
Naresh Kumar ◽  
...  

The dihydropyranoindole scaffold was identified as a promising target for improving the anti-cancer activity of HDAC inhibitors from the preliminary screening of a library of compounds. A suitable methodology has been developed for the preparation of novel dihydropyranoindoles via the Hemetsberger indole synthesis using azido-phenylacrylates, derived from the reaction of corresponding alkynyl-benzaldehydes with methyl azidoacetate, followed by thermal cyclization in high boiling solvents. Anti-cancer activity of all the newly synthesized compounds was evaluated against the SH-SY5Y and Kelly neuroblastoma cells as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Biological studies showed that the tetracyclic systems had significant cytotoxic activity at higher concentration against the neuroblastoma cancer cells. More importantly, these systems, at the lower concentration, considerably enhanced the SAHA toxicity. In addition to that, the toxicity of designated systems on the healthy human cells was found to be significantly less than the cancer cells.


2018 ◽  
Author(s):  
S. Pieper ◽  
H. Onafuye ◽  
D. Mulac ◽  
Jindrich Cinatl ◽  
Mark N. Wass ◽  
...  

AbstractNanoparticles are under investigation as carrier systems for anti-cancer drugs. They have been shown to accumulate in cancer tissues through the enhanced permeability and retention (EPR) effect, to reduce toxicity to non-target tissues, and to protect drugs from preliminary inactivation. However, nanoparticle preparations are not commonly compared for their anti-cancer effects at the cellular level. Here, we prepared doxorubicin-loaded nanoparticles based on poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) by solvent displacement and emulsion diffusion approaches. The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement resulted in the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH7 reaching 53 µg doxorubicin/mg nanoparticle. In addition, these PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anti-cancer effects. In conclusion, doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anti-cancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anti-cancer efficacy. The design of drug-loaded nanoparticles with optimised anti-cancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anti-cancer therapy.


2014 ◽  
pp. 98-101
Author(s):  
Thi Bich Hien Le ◽  
Viet Duc Ho ◽  
Thi Hoai Nguyen

Nowadays, cancer treatment has been a big challenge to healthcare systems. Most of clinical anti-cancer therapies are toxic and cause adverse effects to human body. Therefore, current trend in science is seeking and screening of natural compounds which possess antineoplastic activities to utilize in treatment. Uvaria L. - Annonaceae includes approximately 175 species spreading over tropical areas of Asia, Australia, Africa and America. Studies on chemical compositions and pharmacological effects of Uvaria showed that several compound classes in this genus such as alkaloid, flavonoid, cyclohexen derivaties, acetogenin, steroid, terpenoid, etc. indicate considerable biological activities, for example anti-tumor, anti-cancer, antibacterial, antifungal, antioxidant, etc. Specifically, anti-cancer activity of fractions of extract and pure isolated compounds stands out for cytotoxicity against many cancer cell lines. This study provides an overview of anti-cancer activity of Uvaria and suggests a potential for further studies on seeking and developing novel anti-cancer compounds. Key words: Anti-cancer, Uvaria.


2019 ◽  
Vol 18 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Daipeng Xiao ◽  
Fen He ◽  
Dongming Peng ◽  
Min Zou ◽  
Junying Peng ◽  
...  

Background: Berberine (BBR), an isoquinoline plant alkaloid isolated from plants such as Coptis chinensis and Hydrastis canadensis, own multiple pharmacological activities. Objective: In this study, seven BBR derivatives were synthesized and their anticancer activity against HeLa cervical and A549 human lung cancer cell lines were evaluated in vitro. Methods: The anti-cancer activity was measured by MTT assay, and apoptosis was demonstrated by the annexin V-FITC/PI staining assay. The intracellular oxidative stress was investigated through DCFH-DA assay. The molecular docking study was carried out in molecular operating environment (MOE). Results: Compound B3 and B5 showed enhanced anti-cancer activity compared with BBR, the IC50 for compound B3 and B5 were significantly lower than BBR, and compound B3 at the concentration of 64 or 128 µM induced apoptosis in HeLa and A549 cell lines. The reactive oxygen species (ROS) was generated in both cell lines when treated with 100 µM of all the compounds, and compound B3 and B5 induced higher activity in the generation of ROS, while compound B3 exhibited the highest activity, these results are in accordance with the cytotoxicity results, indicating the cytotoxicity were mostly generated from the oxidative stress. In addition, molecular docking analysis showed that compound B3 had the greatest affinity with Hsp90. Upon binding, the protective function of Hsp90 was lost, which might explain its higher cytotoxicity from molecular interaction aspect. Conclusion: All the results demonstrated that compound B3 and B5 showed significantly higher anti-cancer ability than BBR, and compound B3 is a promising anticancer drug candidate.


2015 ◽  
Vol 15 (5) ◽  
pp. 631-646 ◽  
Author(s):  
Kaalin Gopaul ◽  
Suhas Shintre ◽  
Neil Koorbanally

Sign in / Sign up

Export Citation Format

Share Document