Synthesis and Anticancer Activity of 9-O-Pyrazole Alkyl Substituted Berberine Derivatives

2019 ◽  
Vol 18 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Daipeng Xiao ◽  
Fen He ◽  
Dongming Peng ◽  
Min Zou ◽  
Junying Peng ◽  
...  

Background: Berberine (BBR), an isoquinoline plant alkaloid isolated from plants such as Coptis chinensis and Hydrastis canadensis, own multiple pharmacological activities. Objective: In this study, seven BBR derivatives were synthesized and their anticancer activity against HeLa cervical and A549 human lung cancer cell lines were evaluated in vitro. Methods: The anti-cancer activity was measured by MTT assay, and apoptosis was demonstrated by the annexin V-FITC/PI staining assay. The intracellular oxidative stress was investigated through DCFH-DA assay. The molecular docking study was carried out in molecular operating environment (MOE). Results: Compound B3 and B5 showed enhanced anti-cancer activity compared with BBR, the IC50 for compound B3 and B5 were significantly lower than BBR, and compound B3 at the concentration of 64 or 128 µM induced apoptosis in HeLa and A549 cell lines. The reactive oxygen species (ROS) was generated in both cell lines when treated with 100 µM of all the compounds, and compound B3 and B5 induced higher activity in the generation of ROS, while compound B3 exhibited the highest activity, these results are in accordance with the cytotoxicity results, indicating the cytotoxicity were mostly generated from the oxidative stress. In addition, molecular docking analysis showed that compound B3 had the greatest affinity with Hsp90. Upon binding, the protective function of Hsp90 was lost, which might explain its higher cytotoxicity from molecular interaction aspect. Conclusion: All the results demonstrated that compound B3 and B5 showed significantly higher anti-cancer ability than BBR, and compound B3 is a promising anticancer drug candidate.

2016 ◽  
Vol 15 (4) ◽  
pp. 1-21 ◽  
Author(s):  
Karthika Mayan ◽  
Sameera Samarakoon ◽  
Kamani Tennekoon ◽  
Asitha Siriwardana ◽  
José Valverde

2021 ◽  
Author(s):  
Syeda Kiran Shahzadi ◽  
Noushad Karuvantevida ◽  
Yajnavalka Banerjee

BACKGROUND Cancer is the third leading cause of death in the United Arab Emirates (UAE) after cardiovascular diseases and accidents. In UAE, colorectal cancer (CRC) is the first and fourth most common cancer in males and females respectively. Several treatment modalities have been employed for cancer treatment such as surgery, radiotherapy, chemotherapy, hormone replacement therapy, and immunotherapy. These treatment modalities often elicit adverse effects on normal cells, causing toxic side effects. To circumvent these toxicities, there has been an increased impetus towards the identification of alternate treatment strategies. Animal venoms are veritable gold mines of pharmacologically active polypeptides and proteins. OBJECTIVE In this proof-of-concept study, we avail a high throughput “Venomics” strategy to identify and characterize anticancer bioactive peptides (BAP) from 20 different animal venoms specifically targeting CRC. We chose to focus on CRC as it is one of the foremost health issues in the UAE. METHODS In initial study, we will screen 2500 different peptides derived from 20 different animal venoms for anticancer activity specifically directed against three CRC cell lines and two control cell lines employing the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay for cytotoxicity. Three venoms of the 20, which exhibited specific and potent anticancer activity directed against the three CRC cell lines will be selected; and from these three venoms the specific peptide(s) with anti-CRC activity will be isolated and characterized. RESULTS This study is at the protocol development stage only, and as such, no results are available. CONCLUSIONS In summary, the proposed study will not only generate therapeutic leads to manage/treat one of the leading health issues in the UAE i.e., CRC, but is also of commercial interest as the identified BAP with specific anti-cancer activity against CRC can be patented for commercialization.


2021 ◽  
Author(s):  
Fikriye Zengin Karadayi ◽  
Murat Yaman ◽  
Mehmet Murat Kisla ◽  
Ozlen Konu ◽  
Zeynep Ates-Alagoz

Specific sidechain modifications on the indole-benzimidazole scaffold play fundamental roles for determining molecule's affinity against ERα and its anti-cancer activity.


Author(s):  
Amer Imraish ◽  
Afnan Al-Hunaiti ◽  
Tuqa Abu-Thiab ◽  
Abed Al-Qader Ibrahim ◽  
Eman Hwaitat ◽  
...  

Background: The growing unsatisfaction toward the available traditional chemotherapeutic agents enhanced the need to develop new methods for obtaining materials with more effective and safe anti-cancer properties. Over the past few years, usage of metallic nanoparticles has been a target for researchers of different scientific and commercial fields due to their tiny sizes, environment friendly properties and wide range applications. To overcome the obstacles of traditional physical and chemical methods for synthesis of such nanoparticles, a new less expensive and eco-friendly method has been adopted using natural existing organisms as a reducing agent to mediate synthesis of the desired metallic nanoparticles from their precursors, a process called green biosynthesis of nanoparticles. Objective: Here in the present study, zinc iron bimetallic nanoparticles (ZnFe2O4) were synthesized via an aqueous extract of Boswellia Carteri resin mixed with zinc acetate and iron chloride precursors, and they were tested for their anticancer activity. Methods: Various analytic methods were applied for the characterization of the Phyto synthesized ZnFe2O4 and they were tested for their anticancer activity against MDA-MB-231, K562, MCF-7 cancer cell lines and normal fibroblasts. Results: Our results demonstrate the synthesis of cubic structured bimetallic nanoparticles ZnFe2O4 with an average diameter 10.54 nm. MTT cytotoxicity assay demonstrate that our phyto-synthesized ZnFe2O4 nanoparticles exhibited a selective and potent anticancer activity against K562 and MDA-MB-231 cell lines with IC50 values 4.53 µM and 4.19 µM, respectively. Conclusion: In conclusion, our bio synthesized ZnFe2O4 nano particles show a promising environmentally friendly of low coast chemotherapeutic approach against selective cancers with a predicted low adverse side effect toward normal cells. Further in vivo advanced animal research should be done to execute their applicability in living organisms.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23310-23329
Author(s):  
Viviana Cuartas ◽  
Alberto Aragón-Muriel ◽  
Yamil Liscano ◽  
Dorian Polo-Cerón ◽  
Maria del Pilar Crespo-Ortiz ◽  
...  

A new series of quinazoline-based chalcones and pyrimidodiazepines were tested against 60 human tumor cell lines.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (03) ◽  
pp. 12-17
Author(s):  
Manpreet Kaur ◽  
S. Singh ◽  

A new series of 2,5-disubstituted-1,3,4-oxadiazole derivatives has been synthesized with the help of different aromatic benzaldehydes and final compounds were characterized by FTIR and 1H NMR. 2,5- disubstituted-1,3,4-oxadiazole derivatives were synthesized by the reaction of Schiff base derivatives with 2,5-disubstituted-1,3,4-oxadiazoles. All the synthesized compounds were screened for their anticancer activity. These compounds were evaluated for their anticancer activity against various cancer cell lines. Five of the compounds possessed good to moderate anti-cancer activity. Three of the synthesized compounds i.e. 6a, 6f and 6g were found to possess maximum growth inhibition. The order for the % control growth inhibition of MCF-7 was found to be 6a>6f>6g>5b>6h, as shown in Table II-VI.


Sign in / Sign up

Export Citation Format

Share Document