Ventilatory Response to Hypercapnia as Experimental Model to Study Effects of Oxycodone on Respiratory Depression

2021 ◽  
Vol 16 ◽  
Author(s):  
Lynn R. Webster ◽  
Erik Hansen ◽  
Gregory J. Stoddard ◽  
Austin Rynders ◽  
David Ostler ◽  
...  

Background: Opioid analgesics used to treat pain can cause respiratory depression. However, this effect has not been extensively studied, and life- threatening, opioid-induced respiratory depression remains difficult to predict. We tested the ventilatory response to hypercapnia for evaluating the pharmacodynamic effect of a drug on respiratory depression. Methods: We conducted a randomized, placebo-controlled, double-blind, crossover, study in 12 healthy adult males. Subjects received 2 treatments (placebo and immediate-release oxycodone 30 mg) separated by a 24-hour washout period. Subjects inhaled a mixture of 7% carbon dioxide, 21% oxygen, and 72% nitrogen for 5 minutes to assess respiratory depression. Minute ventilation, respiratory rate, tidal volume, flow rate, end-tidal CO2, and oxygen saturation were recorded continuously at pre-dose and 30, 60, 120, and 180 minutes post-dose. The primary endpoint was the effect on ventilatory response to hypercapnia at 60 minutes post-dose, as assessed by the slope of the linear relationship between minute ventilation and end-tidal CO2. Results: At 60 minutes post-dose, subjects had a mean slope of 2.4 in the oxycodone crossover period, compared to 0.1 in the placebo period (mean difference, 2.3; 95%CI: 0.2 to 4.5; p = 0.035). Statistical significance was likewise achieved at the secondary time points (30, 120, and 180 minutes post-dose, p <0.05). Conclusions: This model for testing ventilatory response to hypercapnia discriminated the effect of 30 mg of oxycodone vs. placebo for up to 3 hours after a single dose. It may serve as a method to predict the relative effect of a drug on respiratory depression.

1986 ◽  
Vol 60 (3) ◽  
pp. 997-1002 ◽  
Author(s):  
D. L. Maxwell ◽  
P. Chahal ◽  
K. B. Nolop ◽  
J. M. Hughes

The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52–55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.


1988 ◽  
Vol 64 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
P. A. Easton ◽  
N. R. Anthonisen

We examined the interrelation between CO2 and the ventilatory response to moderate (80% arterial saturation) sustained hypoxia in normal young adults. On a background of continuous CO2-stimulated hyperventilation, hypoxia was introduced and sustained for 25 min. Initially, with the introduction of hypoxia onto hypercapnia, there was a brisk additional increase in inspiratory minute ventilation (VI) to 284% of resting VI, but the response was not sustained and hypoxic VI declined by 36% to a level intermediate between the initial increase and the preexisting hypercapnic hyperventilation. Through the continuous hypercapnia, the changes in hypoxic ventilation resulted from significant alterations in tidal volume (VT) and mean inspiratory flow (VT/TI) without changes in respiratory timing. In another experiment, sustained hypoxia was introduced on the usual background of room air, either with isocapnia or without maintenance of end-tidal CO2 (ETCO2) (poikilocapnic hypoxia). Regardless of the degree of maintenance of ETCO2, during 25 min of sustained hypoxia, VI showed an initial brisk increase and then declined by 35-40% of resting VI to a level intermediate between the initial response and resting room air VI. For both isocapnia and poikilocapnic conditions, the attenuation of VI was an expression of a diminished VT. Thus the decline in ventilation with sustained hypoxia occurred regardless of the background ETCO2, suggesting that the mechanism underlying the hypoxic decline is independent of CO2.


1984 ◽  
Vol 57 (6) ◽  
pp. 1796-1802 ◽  
Author(s):  
T. Chonan ◽  
Y. Kikuchi ◽  
W. Hida ◽  
C. Shindoh ◽  
H. Inoue ◽  
...  

We examined the relationship between response to hypercapnia and ventilatory response to exercise under graded anesthesia in eight dogs. The response to hypercapnia was measured by the CO2 rebreathing method under three grades of chloralose-urethan anesthesia. The degrees of response to hypercapnia (delta VE/delta PETCO2, 1 X min-1 X Torr-1) in light (L), moderate (M), and deep (D) anesthesia were 0.40 +/- 0.05 (mean +/- SE), 0.24 +/- 0.03, and 0.10 +/- 0.02, respectively, and were significantly different from each other. Under each grade of anesthesia, exercise was performed by electrically stimulating the bilateral femoral and sciatic nerves for 4 min. The time to reach 63% of full response of the increase in ventilation (tauVE) after beginning of exercise was 28.3 +/- 1.5, 38.1 +/- 5.2, and 56.0 +/- 6.1 s in L, M, and D, respectively. During steady-state exercise, minute ventilation (VE) in L, M, and D significantly increased to 6.17 +/- 0.39, 5.14 +/- 0.30, and 3.41 +/- 0.16 1 X min-1, from resting values of 3.93 +/- 0.34, 2.97 +/- 0.17, and 1.69 +/- 0.14 1 X min-1, respectively, while end-tidal CO2 tension (PETCO2) in L decreased significantly to 34.8 +/- 0.9 from 35.7 +/- 0.9, did not change in M (38.9 +/- 1.1 from 38.9 +/- 0.8), and increased significantly in D to 47.3 +/- 1.9 from 45.1 +/- 1.7 Torr.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 126 (3) ◽  
pp. 534-542 ◽  
Author(s):  
Rutger van der Schrier ◽  
Margot Roozekrans ◽  
Erik Olofsen ◽  
Leon Aarts ◽  
Monique van Velzen ◽  
...  

Abstract Background Respiratory depression is a potentially fatal complication of opioid use, which may be exacerbated by simultaneous ethanol intake. In this three-way sequential crossover dose-escalating study, the influence of coadministration of oral oxycodone and intravenous ethanol was assessed on resting ventilation, apneic events and the hypercapnic ventilatory response in healthy young and older volunteers. Methods Twelve young (21 to 28 yr) and 12 elderly (66 to 77 yr) opioid-naive participants ingested one 20 mg oxycodone tablet combined with an intravenous infusion of 0, 0.5, or 1 g/l ethanol. Resting respiratory variables and the primary outcome, minute ventilation at isohypercapnia (end-tidal partial pressure of carbon dioxide of 55 mmHg or VE55), were obtained at regular intervals during treatment. Results Oxycodone reduced baseline minute ventilation by 28% (P &lt; 0.001 vs. control). Ethanol caused a further decrease of oxycodone-induced respiratory depression by another 19% at 1 g/l ethanol plus oxycodone (P &lt; 0.01 vs. oxycodone). Ethanol combined with oxycodone caused a significant increase in the number of apneic events measured in a 6-min window with a median (range) increase from 1 (0 to 3) at 0 g/l ethanol to 1 (0 to 11) at 1 g/l ethanol (P &lt; 0.01). Mean (95% CI) VE55 decreased from 33.4 (27.9 to 39.0) l/min (control) to 18.6 (15.6 to 21.6) l/min (oxycodone, P &lt; 0.01 vs. control) and to 15.7 (12.7 to 18.6) l/min (oxycodone combined with ethanol, 1 g/l; P &lt; 0.01 vs. oxycodone). Conclusions Ethanol together with oxycodone causes greater ventilatory depression than either alone, the magnitude of which is clinically relevant. Elderly participants were more affected than younger volunteers.


2002 ◽  
Vol 93 (4) ◽  
pp. 1498-1505 ◽  
Author(s):  
Nathan E. Townsend ◽  
Christopher J. Gore ◽  
Allan G. Hahn ◽  
Michael J. McKenna ◽  
Robert J. Aughey ◽  
...  

This study determined whether “living high-training low” (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8–10 h/day overnight in normobaric hypoxia (∼2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (ΔV˙e/ΔSpO2 , whereV˙e is minute ventilation and SpO2 is blood O2 saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal Pco 2(Pet CO2 ) and V˙e were measured during room air breathing at rest. HVR (l · min−1 · %−1) was higher ( P < 0.05) in LHTLc than in Con at N1 (0.56 ± 0.32 vs. 0.28 ± 0.16), N3 (0.69 ± 0.30 vs. 0.36 ± 0.24), N10 (0.79 ± 0.36 vs. 0.34 ± 0.14), N15 (1.00 ± 0.38 vs. 0.36 ± 0.23), and Post (0.79 ± 0.37 vs. 0.36 ± 0.26). HVR at N15 was higher ( P < 0.05) in LHTLi (0.67 ± 0.33) than in Con and in LHTLc than in LHTLi. Pet CO2 was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia ( P < 0.05). No significant differences were observed for V˙e at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases Pet CO2 in normoxia, without change inV˙e. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.


2004 ◽  
Vol 97 (5) ◽  
pp. 1673-1680 ◽  
Author(s):  
Chris Morelli ◽  
M. Safwan Badr ◽  
Jason H. Mateika

We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 ± 0.82 vs. women, 4.70 ± 0.77 l·min−1·Torr−1; 150 Torr: men, 4.33 ± 1.15 vs. women, 3.21 ± 0.58 l·min−1·Torr−1). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 ± 1.40 vs. women, 5.97 ± 0.71 l·min−1·Torr−1; 150 Torr: men, 5.73 ± 0.81 vs. women, 3.83 ± 0.56 l·min−1·Torr−1). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.


1996 ◽  
Vol 80 (6) ◽  
pp. 1928-1933 ◽  
Author(s):  
E. Canet ◽  
I. Kianicka ◽  
J. P. Praud

Although studies on lambs have shown that carotid body sensitivity to O2 is reset postnatally, it is still unknown whether O2 and CO2 peripheral chemoreflexes undergo parallel postnatal maturation. The present study was designed to analyze maturation of O2 and CO2 peripheral chemoreflexes in 10 lambs at < 24 h and at 12 days of age. We measured the ventilatory (VE) response to three tidal breaths of pure N2 or 13% CO2 in air. Overall, the N2 peripheral chemoreflex increased significantly with maturation [VE/end-tidal O2 (ml.min-1.kg-1.Torr-1) = 2.94 +/- 0.91 at < 24 h vs. 5.13 +/- 0.59 at 12 days, P < 0.05], whereas the CO2 peripheral chemoreflex did not change (VE/end-tidal CO2 = 7.04 +/- 0.98 at < 24 h vs. 7.75 +/- 1.07 at 12 days, not significant). We conclude that the CO2 peripheral chemoreflex does not change in awake lambs within the time frame studied, in contrast to a marked postnatal maturation of the O2 peripheral chemoreflex. The different time courses of O2 and CO2 peripheral chemoreflex maturation support the concept that carotid body sensitivities to O2 and CO2 do not depend on the same basic mechanisms.


1996 ◽  
Vol 81 (5) ◽  
pp. 1978-1986 ◽  
Author(s):  
C. Tantucci ◽  
P. Bottini ◽  
M. L. Dottorini ◽  
E. Puxeddu ◽  
G. Casucci ◽  
...  

Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response to exercise in diabetic subjects with autonomic neuropathy. J. Appl. Physiol. 81(5): 1978–1986, 1996.—We have used diabetic autonomic neuropathy as a model of chronic pulmonary denervation to study the ventilatory response to incremental exercise in 20 diabetic subjects, 10 with (Dan+) and 10 without (Dan−) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan− subjects achieved lower O2 consumption and CO2 production (V˙co 2) than control subjects at peak of exercise, they attained similar values of either minute ventilation (V˙e) or adjusted ventilation (V˙e/maximal voluntary ventilation). The increment of respiratory rate with increasing adjusted ventilation was much higher in Dan+ than in Dan− and control subjects ( P < 0.05). The slope of the linearV˙e/V˙co 2relationship was 0.032 ± 0.002, 0.027 ± 0.001 ( P < 0.05), and 0.025 ± 0.001 ( P < 0.001) ml/min in Dan+, Dan−, and control subjects, respectively. Both neuromuscular and ventilatory outputs in relation to increasingV˙co 2 were progressively higher in Dan+ than in Dan− and control subjects. At peak of exercise, end-tidal [Formula: see text] was much lower in Dan+ (35.9 ± 1.6 Torr) than in Dan− (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects. We conclude that pulmonary autonomic denervation affects ventilatory response to stressful exercise by excessively increasing respiratory rate and alveolar ventilation. Reduced neural inhibitory modulation from sympathetic pulmonary afferents and/or increased chemosensitivity may be responsible for the higher inspiratory output.


1987 ◽  
Vol 73 (6) ◽  
pp. 617-625 ◽  
Author(s):  
K. Murphy ◽  
R. P. Stidwill ◽  
Brenda A. Cross ◽  
Kathryn D. Leaver ◽  
E. Anastassiades ◽  
...  

1. Continuous recordings of arterial pH, ventilation, airway CO2 and heart rate were made during rest and during 3–4 min periods of rhythmic leg exercise in four renal patients with arteriovenous shunts. 2. The patients were anaemic (haemoglobin 6.5–9.0 g/dl) but had a normal ventilatory response to exercise as judged by the ratio of the change in ventilation to the change in CO2 production. 3. Breath-by-breath oscillations in arterial pH disappeared for the majority of the exercise period in each patient. 4. Changes in mean arterial pH and end-tidal CO2 tension with exercise were inconsistent between subjects but consistent within a given subject. On average, mean arterial pH rose by 0.011 pH unit. Changes in end-tidal CO2 tension reflected changes in mean pHa by falling on average by 1 mmHg (0.13 kPa). 5. Hypercapnia and acidaemia were not found to be necessary for the ventilatory response to moderate exercise.


1983 ◽  
Vol 65 (1) ◽  
pp. 65-69 ◽  
Author(s):  
P. M. A. Calverley ◽  
R. H. Robson ◽  
P. K. Wraith ◽  
L. F. Prescott ◽  
D. C. Flenley

1. To determine the mode of action of doxapram in man we have measured ventilation, oxygen uptake, CO2 production, hypoxic and hypercapnic ventilatory responses in six healthy men before and during intravenous infusion to maintain a constant plasma level. 2. Doxapram changed neither resting oxygen uptake nor CO2 production but produced a substantial increase in resting ventilation at both levels of end-tidal CO2 studied. 3. Doxapram increased the ventilatory response to isocapnic hypoxia from − 0.8 ± 0.4 litre min−1 (%Sao2)−1 to −1.63 ± 0.9 litres min−1 (%Sao2)−1. This was similar to the increase in hypoxic sensitivity which resulted from raising the end-tidal CO2 by 0.5 kPa without adding doxapram. 4. The slope of the ventilatory response to rebreathing CO2 rose from 11.6 ± 5.3 litres min−1 kPa−1 to 20,4 ± 9.8 litres min−1 kPa−1 during doxapram infusion. 5. The marked increase in the ventilatory response to CO2 implies that doxapram has a central action, but the potentiation of the hypoxic drive also suggests that the drug acts on peripheral chemoreceptors, or upon their central connections, at therapeutic concentrations in normal unanaesthetized subjects.


Sign in / Sign up

Export Citation Format

Share Document