Cytotoxic Evaluation and Molecular Docking studies of Aminopyridine derivatives as Potential Anticancer Agents

Author(s):  
Umair Ilyas ◽  
Shagufta Naaz ◽  
Syed Aun Muhammad ◽  
Humaira Nadeem ◽  
Reem Altaf ◽  
...  

Background: The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate for this therapeutic failure. Objectives: The current study demonstrated whether N-protected and deprotected amino acid derivatives of 2-aminopyridine could attenuate tumor development using colorectal cancer cell lines. Methods: Biological assays were performed to investigate the anticancer potential of synthesized compounds. The in silico ADME profiling and docking studies were also performed by docking the designed compounds against the active binding site of beta-catenin (CTNNB1) to analyze the binding mode of these compounds. Four derivatives 4a, 4b, 4c, and 4d were selected for investigation of in vitro anticancer potential using colorectal cancer cell line HCT 116. The anti-tumor activities of synthesized compounds were further validated by evaluating the inhibitory effects of these compounds on the target protein beta-catenin through in vitro enzyme inhibitory assay. Results: The docking analysis revealed favorable binding energies and interactions with the target proteins. The in vitro MTT assay on colorectal cancer cell line HCT 116 and HT29 revealed potential anti-tumor activities with an IC50 range of 3.7-8.1µM and 3.27-7.7 µM, respectively. The inhibitory properties of these compounds on the concentration of beta-catenin by ELISA revealed significant percent inhibition of target protein at 100 µg/ml. Conclusion: In conclusion, the synthesized compounds showed significant anti-tumor activities both in silico and in vitro, having potential for further investigating its role in colorectal cancer.

2021 ◽  
Author(s):  
Veeranna Yempally ◽  
Queenie Fernandez ◽  
Lobna Safwan Al_Zaidan ◽  
Varghese Inchakalody ◽  
Maysaloun Merhi ◽  
...  

2016 ◽  
Vol 25 (3) ◽  
pp. 136-42
Author(s):  
Lili Indrawati ◽  
Purwantyastuti Ascobat ◽  
Budiman Bela ◽  
Murdani Abdullah ◽  
Ingrid S. Surono ◽  
...  

Background: The prevalence of colorectal cancer is rising in Asia including Indonesia. Annona muricata tea leaves, that is traditionally used for maintaining health, and lately being used by cancer patients. The objectives of this study is to investigate its effects in human colorectal cancer cell in vitro and ex vivo.Methods: Thirty patients with colorectal cancer (CRC) were enrolled in a randomized double-blind placebo-controlled trial. They were equally divided into two groups: those treated with 300 mg A. muricata leaf extract and placebo daily for 8 weeks. Serum from supplemented CRC patients of both groups was compared for caspase 9 and caspase 8 enhancement activity. Antiproliferative effect of water extract of A. muricata leaves and its fractions were evaluated against colorectal cancer cell line (DLD-1 and COLO 205) compared with 5-fluorouracil and placebo, the dose range was 62.5-2,000 µg/mL. Method used was 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by Mann-Whitney U test. The p value was set at 0.05.Results: Ethanol-soluble fraction of A. muricata leaves extract water extract (ESFAM) leaves extract had cytotoxicity effects on DLD-1 as well as COLO 205 cell line, as shown by the lower IC50 compared to 5-fluorouracil and placebo, 20.59 μg/mL and 654.9μg/mL, respectively. Serum of subjects supplemented with extract significantly induced caspase 9 (p=0.001) activity of DLD-1 colorectal cancer cell line, but not for caspase 8 activity (p=0.372).Conclusion: The study's results suggest the cytotoxicity potential of  A. muricata  leaves extract  in in vitro and ex vivo studies.


2015 ◽  
Vol 26 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Ladan Teimoori-Toolabi ◽  
Saba Hashemi ◽  
Kayhan Azadmanesh ◽  
Farnaz Eghbalpour ◽  
Farnaz Safavifar ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
pp. 70-81 ◽  
Author(s):  
A. Orlandi ◽  
M. Di Salvatore ◽  
C. Bagalà ◽  
M. Basso ◽  
A. Strippoli ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Piotr Piasecki ◽  
Aleksandra Majewska ◽  
Jerzy Narloch ◽  
Maciej Maciak ◽  
Klaudia Brodaczewska ◽  
...  

AbstractWe propose a new in vitro model to assess the impact of 90Y-microspheres derived low-dose beta radiation on colorectal cancer cell line under various oxygenation conditions that mimic the tumor environment. Cancer cells (HCT116) proliferation was assessed using Alamar Blue (AB) assay after 48, 72, and 96 h. FLUKA code assessed changes in cancer cell populations relative to the absorbed dose. In normoxia, mitochondrial activity measured by Alamar Blue after 48–72 h was significantly correlated with the number of microspheres (48 h: r = 0.87 and 72 h: r = 0.89, p < 0.05) and absorbed dose (48 h: r = 0.87 and 72 h: r = 0.7, p < 0.05). In hypoxia, the coefficients were r = 0.43 for both the number of spheres and absorbed dose and r = 0.45, r = 0.47, respectively. Impediment of cancer cell proliferation depended on the absorbed dose. Doses below 70 Gy could reduce colorectal cancer cell proliferation in vitro. Hypoxia induced a higher resistance to radiation than that observed under normoxic conditions. Hypoxia and radiation induced senescence in cultured cells. The new in vitro model is useful for the assessment of 90Y radioembolization effects at the micro-scale.


Sign in / Sign up

Export Citation Format

Share Document