Comparison the effects of Sambucus ebulus leaf and fruit extracts on Leishmania major in-vitro

Author(s):  
Samira Kadkhodamasoum ◽  
Farahnaz Bineshian ◽  
Amir KarimiPour ◽  
Pooya Tavakoli ◽  
Masoud Foroutan ◽  
...  

Background;: Leishmaniasis is one of the major diseases caused by the intracellular parasite of Leishmania. It has become one of the most dangerous health problems today. Our aim of the present study is to compare the effects of Sambucus ebulus leaf and fruit extracts on Leishmania major in vitro. Methods: In this study, we used MTT, promastigote and amastigote assay to evaluate the effect of different concentrations of the extract on parasite and we compared their effects. The flow cytometry technique was also used to detect the apoptotic effect of the extracts on promastigotes. Results: According to MTT experiment IC50 concentration of leaf and fruit extracts on parasite was 157 μg/ml and 265 μg/ml, respectively. After analysis by flow cytometry, leaf and fruit extracts also showed apoptosis effect. Leaf and fruit extract caused 40.2 and 2.67 percent apoptosis. Conclusion: Based on the above assessment, we determined that the S. ebulus leaf extract has a more toxic effect on promastigotes and amstigotes than its fruit extract and maybe in the future that be used as a drug candidate.

Author(s):  
Adewunmi Rofiat Funmilola ◽  
Gidado Abubakar ◽  
Zanna Hassan

Solanum dasyphyllum belongs to the family of plants called Solanaceae, it is commonly called "Africa eggplant" and one of the medicinal plants used in the treatment of snake envenomation in the southwestern part of Nigeria, but investigation concerning its anti-venom activity has not been established. The present study evaluates the in-vitroenzyme inhibition potential of S.dasyphyllum leaf and fruit extracts against Naja nigricollis (Black-necked spitting cobra) venom. The inhibitory potential of S. dasyphyllum leaf and fruit on proteases, acetylcholinesterase, phospholipase A2 and hyaluronidase enzymes present in the snake venom was evaluated. The methanolic leaf and fruit extracts of S. dasyphyllum inhibited the activity of all enzymes evaluated, however, the leaf extract exhibited better enzyme inhibitory effect on N. nigricollis venom when compared with the fruit. This could be due to the presence of various phytochemicals in leaf and fruit extract.  This result substantiates the ethnomedicinal usage of S. dasyphyllum and would help to develop potent antidote therapy against N. nigricollis envenomation.


2020 ◽  
Vol 20 (4) ◽  
pp. 550-555 ◽  
Author(s):  
Lima Asgharpour Sarouey ◽  
Parvaneh Rahimi-Moghaddam ◽  
Fatemeh Tabatabaie ◽  
Khadijeh Khanaliha

: As an important global disease, cutaneous leishmaniasis is associated with complications such as secondary infections and atrophic scars. The first line treatment with antimonials is expensive and reported to have serious side effects and enhance resistance development. The main objective of this study was to evaluate the effect of Cinnarizine on standard strains of Leishmania major because of paucity of information on this subject. Methods: In this experimental study, four concentrations of the drug (5, 10, 15 and 20 μg/ml) were added to Leishmania major cultures at 24, 48 and 72 hours intervals. MTT assays were performed to determine parasite viability and drug toxicity. Leishmania major promastigotes were augmented to the in vitro cultured macrophages (J774 cells) and then incubated for 72 hours. Half maximal inhibitory concentration (IC50) was ascertained by counting parasites. The inhibitory effect of the drug was compared with that of Glucantime. Flow-cytometry was performed to investigate apoptosis. Each test was repeated thrice. Results: The IC50 values of Cinnarizine after 72 hours were calculated to be 34.76 μg/ml and 23.73 μg/ml for promastigotes and amastigotes, respectively. The results of MTT assays showed 48 % promastigote viability after 72 hour-exposure to Cinnarizine at 20 μg/ml concentration. Programmed cell death in promastigote- and amastigote-infected macrophages was quantified to be 13.66 % and 98.7 %, respectively. Flow- cytometry analysis indicated that Cinnarizine induced early and late apoptosis in parasites. All treatments produced results which differed significantly from control group (P<0.05). Conclusion: Cinnarizine showed low toxicity with anti-leishmanial and apoptosis effects on both promastigote and intracellular amastigote forms. Therefore, we may suggest further assessment on animal models of this drug as candidates for cutaneous leishmaniasis therapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A243-A243
Author(s):  
Thomas Thisted ◽  
Arnab Mukherjee ◽  
Kanam Malhotra ◽  
Zuzana Biesova ◽  
Yuliya Kleschenko ◽  
...  

BackgroundImmunotherapies, especially immune checkpoint inhibitors, have become a cornerstone of cancer treatment. Remarkable clinical responses have been observed blocking the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis across a spectrum of indications. However, innate and/or acquired resistance to anti-PD-1 blockade remains a major challenge. V-domain Ig suppressor of T-cell activation (VISTA) is a B7-family member, which promotes T-cell and myeloid quiescence and represents a promising target, particularly in combination with anti-PD-1/PD-L1 treatment. Recently, the interaction of VISTA with its receptor PSGL-1 was demonstrated to be significantly enhanced by the acidic tumor microenvironment (TME). As VISTA is highly expressed on myeloid cells, including those in the blood, antibodies binding VISTA at physiological pH 7.4 could result in rapid elimination from circulation through targeted-mediated drug disposition, making efficacious drug occupancy levels difficult to reach and potentially narrowing the therapeutic window. An antibody engineered to selectively bind and block VISTA at low pH in the TME may therefore be an ideal drug candidate.MethodsIn this study, fully human anti-VISTA antibodies were generated through pH-selective enrichment strategies of a yeast-based display library comprising highly diverse synthetic immune repertoires. The ‘parental’ antibodies have been extensively characterized using in vitro flow-cytometry, surface-plasmon resonance (SPR) and PSGL-1/VISTA inhibition assays in primary human CD4 and CD8 T-cells at pH 6.0 and pH 7.4. Eight parental antibodies were identified and tested for combinatorial efficacy with anti-PD-1 in vivo in human VISTA knock-in mice inoculated with syngeneic MC-38 tumors. These antibodies underwent further optimization for enhanced binding affinity at pH 6.0 and decreased binding at pH 7.4. ‘Progeny’ antibody ranking was based on the same in vitro and in vivo characterization as parental antibodies.ResultsEighty four parental antibodies were initially discovered. Flow-cytometry and SPR analysis revealed candidates displaying pH-dependent binding to endogenously expressed native VISTA on cells, and a PSGL-1/VISTA inhibition assay at pH 6.0 was run to identify and rank potent interface blockers. Eight candidate antibodies were tested in an in vivo intervention study in combination with anti-murine PD-1 demonstrating varied combinatorial efficacy with a subset leading to superior tumor rejection. Characterization of optimized progeny antibodies led to identification of anti-VISTA antibody SNS-101.ConclusionsEnrichment of highly diverse antibody libraries led to the identification of a pH-selective inhibitory anti-VISTA antibody SNS-101, which exerts excellent combinability with anti-PD-1 leading to superior anti-tumor activity in a mouse model.


Author(s):  
Prashith Kekuda T. R. ◽  
Raghavendra H. L. ◽  
Shilpa M. ◽  
Pushpavathi D. ◽  
Tejaswini Petkar ◽  
...  

Objective: The present study was carried out to investigate antimicrobial, antiradical and insecticidal potential of leaf and fruit of Gardenia gummifera L. f. (Rubiaceae).Methods: The leaf and fruits were shade dried, powdered and extracted by maceration process using methanol. Antibacterial activity was evaluated against Gram positive and Gram negative bacteria by Agar well diffusion assay. Antifungal activity was determined against six seed-borne fungi by Poisoned food technique. Antiradical activity of leaf and fruit extracts was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis 3-ethylbenzothiazoline 6-sulfonate (ABTS) radical scavenging assays. Insecticidal activity of leaf and fruit extracts, in terms of larvicidal and pupicidal activity, was assessed against larvae and pupae of Aedes aegypti.Results: Both the extracts inhibited all test bacteria. Marked antibacterial activity was displayed by fruit extract when compared to leaf extract. S. epidermidis and E. coli were inhibited to highest and least extent by both extracts respectively. Fruit extract was found to exhibit higher antifungal effect when compared to leaf extract. Leaf extract and fruit extract exhibited highest inhibitory activity against A. niger and A. flavus respectively. Leaf and fruit extracts scavenged DPPH radical’s dose dependently with an IC50 value of 49.01µg/ml and 2.53µg/ml respectively. The scavenging of ABTS by leaf and fruit extracts was dose dependent and the IC50 value for leaf and fruit extract was 2.58µg/ml and 2.31µg/ml respectively. Fruit extract was shown to exhibit marked antiradical activity when compared to leaf extract. Leaf and fruit extracts exhibited dose dependent insecticidal activity in terms of larvicidal and pupicidal activity and the susceptibility of larvae and pupae to extracts was in the order II instar larvae>IV instar larvae>pupae. Fruit extract displayed marked insecticidal potential when compared to leaf extract.Conclusion: Overall, fruit extract of G. gummifera exhibited marked antimicrobial, antiradical and insecticidal activity when compared to leaf extract. The plant can be used for developing agents/formulations effective against infectious microorganisms, oxidative stress and insect vectors that transmit dreadful diseases. The observed bioactivities could be ascribed to the presence of active principles which are to be isolated and characterized.


Parasitology ◽  
2016 ◽  
Vol 143 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
RABIAA M. SGHAIER ◽  
IMEN AISSA ◽  
HANÈNE ATTIA ◽  
AYMEN BALI ◽  
PABLO A. LEON MARTINEZ ◽  
...  

SUMMARYSynthesized lipophilic tyrosyl ester derivatives with increasing lipophilicity were effective against Leishmania (L.) major and Leishmania infantum species in vitro. These findings prompted us to test in vivo leishmanicidal properties of these molecules and their potential effect on the modulation of immune responses. The experimental BALB/c model of cutaneous leishmaniasis was used in this study. Mice were infected with L. major parasites and treated with three in vitro active tyrosyl esters derivatives.Among these tested tyrosylcaprate (TyC) compounds, only TyC10 exhibited an in vivo anti-leishmanial activity, when injected sub-cutaneously (s.c.). TyC10 treatment of L. major-infected BALB/c mice resulted in a decrease of lesion development and parasite load. TyC10 s.c. treatment of non-infected mice induced an imbalance in interferon γ/interleukin 4 (IFN-γ/IL-4) ratio cytokines towards a Th1 response. Our results indicate that TyC10 s.c. treatment improves lesions’ healing and parasite clearance and may act on the cytokine balance towards a Th1 protective response by decreasing IL-4 and increasing IFN-γ transcripts. TyC10 is worthy of further investigation to uncover its mechanism of action that could lead to consider this molecule as a potential drug candidate.


2004 ◽  
Vol 21 (5) ◽  
pp. 383-391 ◽  
Author(s):  
Erol Erduran ◽  
Yavuz Tekelioglu ◽  
Yusuf Gedik ◽  
İsmail Bektaş ◽  
Sadan Hacisalihoglu

2019 ◽  
Vol 2 (2) ◽  
pp. 57 ◽  
Author(s):  
Diajeng Celia Radita ◽  
Armelia Sari Widyarman

Introduction: Mahkota dewa (Phaleria macrocarpa) is an Indonesian fruit that contains antibacterial compounds, such as flavonoids, saponins, and tannins; it has been used as an alternative treatment for controlling infection. Objectives: This study aimed to examine the effect of mahkota dewa fruit extract on the formation of Porphyromonas gingivalis (P. gingivalis), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and Treponema denticola (T. denticola) biofilms in vitro. Methods: God’s crown fruit was extracted using the maceration technique, and then diluted into different concentrations (25%, 12.5%, 6.25%, 3.125%, and 1.56%) using phosphate buffered saline (PBS). P. gingivalis ATCC-33277, A. actinomycetemcomitans ATCC-29522, or T. denticola ATCC-35405 were cultured in brain heart infusion (BHI) broth, 24h (anaerobic-condition), and then each type of bacteria (108CFU/mL) was distributed into a 96-well microplate to form a biofilm. Subsequently, the fruit extracts were distributed into the biofilm-containing well plates and incubated for 1h, 6h, and 24h. A biofilm without the fruit extract and chlorhexidine-gluconate (0.2%) was used as the negative and positive control, respectively. Crystal violet (0.5%w/v) was used to determine the density of the remaining biofilm using a microplate spectrophotometer (600 nm). Data were statistically analyzed using one-way ANOVA, and p <0.05 was set as the level of significance. Results: The mahkota dewa fruit extracts significantly inhibited the formation of a biofilm for all three bacterial strains at all concentrations and for each incubation time (p <0.05) based on optical density (OD)±SD.  The best concentration of fruit extract to inhibit biofilm formation was 25% for P. gingivalis (OD=0.19±0.06), 12.5% for A. actinomycetemcomitans (OD=0.14 ± 0.16), and 25% for T. denticola (OD=1.17±0.19) in comparison to the biofilm mass of the negative control, which was 1.67±0.06, 1.17±0.34, 2.66±0.38 for P. gingivalis, A. actinomycetemcomitans, and T. denticola, respectively. Conclusion: Based on these results, mahkota dewa fruit extract can inhibit the formation of biofilm on P. gingivalis, A. actinomycetemcomitans, and T. denticola, and it may potentially be used to prevent the infection associated with periodontal disease.


Author(s):  
Javad JABARI ◽  
Fatemeh GHAFFARIFAR ◽  
John HORTON ◽  
Abdolhosein DALIMI ◽  
Zohreh SHARIFI

Background: In this research, the effect of morphine on promastigotes and amastigotes of Leishmania major has been investigated in the presence of nalmefene as a blocking opioid drug and imiquimod as an opioid growth factor receptor. Methods: This study was conducted at Tarbiat Modares University, Tehran, Iran in 2015-2018. Morphine with different concentration (0.1, 1, 10 and 100 1µg/ml) alone and with imiquimod (0.01, 0.1 and 1µg/ml) and nalmefene (0.1, 1 and 10 µg/ml) on promastigotes and amastigotes in macrophages and also the percentage of infected macrophages was investigated. For evaluation of the apoptosis, we used flow cytometry method. The effect of imiquimod and nalmefene on glucantime and amphotericin B as current drugs for treatment of leishmaniasis was evaluated too. Results: The effect of morphine on promastigotes and amastigotes has a reverse relationship with its concentration. The results of flow cytometry for drug-treated promastigotes revealed that apoptosis and necrosis did not increase markedly relative to the control group. A combination of morphine and imiquimod in concentrations of 0.05, 5 and 5 µg/ml had a pronounced effect on reduction and prevention of macrophage infection with amastigotes. Morphine at a concentration of 0.1 µg/ml plays the role of adjunctive treatment. In amastigote assay we found the better results in group that get glucantime 25 µg/ml+ imiquimod 0.5 µg/ml. Conclusion: This effect is strengthened with imiquimod and weakened with nalmefene. Using high dose morphine and nalmefene had reverse effects. They suppress immune system and had no controlling effect in macrophages amastigote infection and reduction of promastigotes.


Author(s):  
Mahmoodreza Moein ◽  
Gholamreza Hatam ◽  
Razieh Taghavi-Moghadam ◽  
Mohammad M. Zarshenas

Petroleum ether, chloroform, ethyl acetate, and n-butanol fractions of Greek juniper ( Juniperus excelsa M.Bieb. from the family Cupressaceae) were evaluated for antileishmanial activities against Leishmania major promastigotes compared to meglumine antimoniate (Glucantime). In vitro toxicity assay was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and microplate ELISA reader. Extracts were prepared in ethanol/dimethyl sulfoxide (80/20) at 10 to 0.62 mg/mL. The standard was prepared in phosphate-buffered saline at 500 to 15.62 mg/mL. Both leaf and fruit extracts and related fractions showed strong inhibitory effects against promastigotes, significantly different from that of the standard. The leaf extract and the respective petroleum ether fraction showed maximum effectiveness compared to other fractions and also fruit extract and fractions (IC90 = 1.89 ± 0.03 and 0.90 ± 0.03 mg/mL, respectively). Regarding the potent activities of nonpolar fractions of Greek juniper leaf extract, these fractions can be suggested for further investigation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ceren Kımna ◽  
Tuğçe Fafal

Abstract Objectives In this study, we aim at deciphering the phenolic content of Vitex agnus-castus L. leaf and fruit extracts prepared with different methods and relate it to their antioxidant activity. Methods In this study, phenolic compounds and the antioxidant potential of the ethanol fruit and leaf extracts of V. agnus-castus L. (Chaste tree) were evaluated spectrometrically. Furthermore, selected polyphenols, i.e., chlorogenic acid and rutin, were determined by the HPLC-DAD method qualitatively and quantitatively. Results The results obtained from leaf and fruit extracts were compared with a commercial product (CP) containing the fruit extract of V. agnus-castus. Leaf extract was found to be richer in flavonoids when compared to the fruit counterparts. Accordingly, they also showed higher antioxidant activity. Conclusions Extracts prepared here can be considered as promising antioxidant agents for future therapeutic formulations.


Sign in / Sign up

Export Citation Format

Share Document