Curcumin targets p53-fibrinolytic system in TGF-β1 mediated alveolar epithelial mesenchymal transition in alveolar epithelial cells

Author(s):  
Sadiya Bi Shaikh ◽  
Ashwini Prabhu ◽  
Yashodhar P. Bhandary

Aims: We aim to investigate the interaction of curcumin with p53-fibrinolytic system, smad dependent and independent pathways underlying their prime role during lung injury and fibrosis. Background: Curcumin an active component of Curcuma longa plant substantially modulates respiratory conditions. TGFβ1 plays a central role in lung remodeling by balancing extracellular matrix (ECM) production and degradation which is a hallmark for alveolar EMT. However, it is not known yet the crosstalk of curcumin with TGF- β1 mediated p53- Fibrinolytic system regulating alveolar EMT leading to IPF. In the present study, the potential molecular mechanism of curcumin in TGF-β1 mediated p53-fibrinolytic system in basal alveolar epithelial cells was explored. Objectives: To understand the potential molecular mechanism of curcumin in TGF-β1 mediated p53-fibrinolytic system in basal alveolar epithelial cells. Methods: Basal alveolar epithelial cells were treated with TGF- β1 to induce alveolar EMT and after 24 hrs curcumin were administered to study its anti-fibrotic effects. Molecular techniques like immuno blot, RT-PCR and immunofluorescence were performed to assess the anti-fibrotic role of curcumin on EMT markers, IL-17A, p53-smad interaction to investigate the anti-fibrotic role of curcumin. Results: The results indicated that TGF-β1-induced EMT in A549 cells exhibited altered expression of the IL-17A, p53- fibrinolytic markers and EMT markers at the mRNA and protein level. Intervention with curcumin attenuated alveolar EMT and inactivated TGF-β1 induced Smad/non Smad signaling pathways via blocking p53-fibrinolytic system. Conclusions: This study provides the first evidence of the dynamic response of curcumin on TGF-β1 mediated p53- fibrinolytic system during alveolar injury in vitro.

2021 ◽  
Author(s):  
Chen-Yu Zhang ◽  
Xin-Xin Guan ◽  
Zhuo-Hui Song ◽  
Hui-Ling Jiang ◽  
Yu-Biao Liu ◽  
...  

Abstract Background: Arachidonic acid (ARA) metabolites are involved in the pathogenesis of epithelial-mesenchymal transformation (EMT). However, the role of ARA metabolism in the progression of EMT in pulmonary fibrosis (PF) has not been fully elucidated. The purpose of this study was to investigate the role of cytochrome P450 oxidase (CYP)/ soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) metabolic disorders of ARA in EMT during PF.Methods: A signal intratracheal injection of bleomycin (BLM) was given to induce PF in C57BL/6J mice. A COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation to EMT in PF mice. In vitro experiments, murine alveolar epithelial cells (MLE12) and human alveolar epithelial cells (A549) were used to explore the roles and mechanisms of PTUPB on transforming growth factor (TGF)-β1-induced EMT. Results: PTUPB treatment reversed the increase of mesenchymal marker molecule α-smooth muscle actin (α-SMA) and the loss of epithelial marker molecule E-Cadherin in lung tissue of PF mice. In vitro, COX-2 and sEH protein levels were increased in TGF-β1-treated alveolar epithelial cells (AECs). PTUPB decreased the expression of α-SMA and restored the expression of E-cadherin in TGF-β1-treated AECs, accompanied by reduced migration and collagen synthesis. Moreover, PTUPB alleviated the activation of the TGF-β1-Smad2/3 pathway induced by TGF-β1 in AECs.Conclusion: PTUPB inhibits TGF-β1-induced EMT via inhibition of the TGF-β1-Smad2/3 pathway, which holds great promise for the clinical treatment of PF.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenzhen Ma ◽  
Chunyan Ma ◽  
Qingfeng Zhang ◽  
Yang Bai ◽  
Kun Mu ◽  
...  

AbstractAlveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial–mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-β1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-β1/Smad3 signaling pathway.


2011 ◽  
Vol 301 (4) ◽  
pp. F793-F801 ◽  
Author(s):  
Abolfazl Zarjou ◽  
Shanzhong Yang ◽  
Edward Abraham ◽  
Anupam Agarwal ◽  
Gang Liu

Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.


2012 ◽  
Vol 227 (9) ◽  
pp. 3185-3191 ◽  
Author(s):  
Ling-Li Guo ◽  
Ya-Juan Chen ◽  
Tao Wang ◽  
Jing An ◽  
Cheng-Na Wang ◽  
...  

2004 ◽  
Vol 72 (3) ◽  
pp. 1767-1774 ◽  
Author(s):  
Beatriz de Astorza ◽  
Guadalupe Cortés ◽  
Catalina Crespí ◽  
Carles Saus ◽  
José María Rojo ◽  
...  

ABSTRACT The airway epithelium represents a primary site for contact between microbes and their hosts. To assess the role of complement in this event, we studied the interaction between the A549 cell line derived from human alveolar epithelial cells and a major nosocomial pathogen, Klebsiella pneumoniae, in the presence of serum. In vitro, we found that C3 opsonization of poorly encapsulated K. pneumoniae clinical isolates and an unencapsulated mutant enhanced dramatically bacterial internalization by A549 epithelial cells compared to highly encapsulated clinical isolates. Local complement components (either present in the human bronchoalveolar lavage or produced by A549 epithelial cells) were sufficient to opsonize K. pneumoniae. CD46 could competitively inhibit the internalization of K. pneumoniae by the epithelial cells, suggesting that CD46 is a receptor for the binding of complement-opsonized K. pneumoniae to these cells. We observed that poorly encapsulated strains appeared into the alveolar epithelial cells in vivo but that (by contrast) they were completely avirulent in a mouse model of pneumonia compared to the highly encapsulated strains. Our results show that bacterial opsonization by complement enhances the internalization of the avirulent microorganisms by nonphagocytic cells such as A549 epithelial cells and allows an efficient innate defense.


2007 ◽  
Vol 293 (1) ◽  
pp. L212-L221 ◽  
Author(s):  
Shilpa Vyas-Read ◽  
Philip W. Shaul ◽  
Ivan S. Yuhanna ◽  
Brigham C. Willis

Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-β1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-β1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol·mg protein−1·min−1 with 67% derived from eNOS. TGF-β1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased α-smooth muscle actin (α-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-β1-treated AEC decreased stress fiber-associated α-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-β alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.


2006 ◽  
Vol 82 (3) ◽  
pp. 351-354 ◽  
Author(s):  
M. E. Pero ◽  
N. Mirabella ◽  
P. Lombardi ◽  
C. Squillacioti ◽  
A. De Luca ◽  
...  

AbstractIn the present study, the rôle of gammaglutamyltransferase (GGT) during lactation has been investigated in the water buffalo. GGT activity has been evaluated in the mammary tissue at 4 and 6 months after calving and during the non-lactating period. The highest GGT activity levels were found at day 120 (32·57±7·41 U per g) of lactation and were statistically higher than those at 180 (10·76±3·6 U per g) or during the non-lactating period (9·86±7·94 U per g). Histochemistry confirmed these findings and revealed that GGT reactivity was distributed throughout the cytoplasm of alveolar epithelial cells. Such results showed that the GGT production is high during lactation thus supporting the hypothesis that this enzyme plays a rôle in determining milk production in water buffalo by supporting milk protein synthesis.


1992 ◽  
Vol 262 (1) ◽  
pp. L32-L39 ◽  
Author(s):  
K. A. Wikenheiser ◽  
S. E. Wert ◽  
J. R. Wispe ◽  
M. Stahlman ◽  
M. D'Amore-Bruno ◽  
...  

Hyperoxia causes severe lung injury in association with altered expression of surfactant proteins and lipids. To test whether oxygen induces surfactant protein B (SP-B) expression in specific respiratory epithelial cells, adult B6C3F1 and FVB/N mice were exposed to room air or 95% oxygen for 1–5 days. Northern blot analysis demonstrated an 8- to 10-fold increase in SP-B mRNA after 3 days that was maintained thereafter. In situ hybridization localized SP-B mRNA to bronchial, bronchiolar, and alveolar epithelial cells. Hyperoxia was associated with increased SP-B mRNA, noted primarily in the bronchiolar epithelium and decreased SP-B mRNA in the alveolar epithelium. After 5 days, central regions of lung parenchyma were nearly devoid of SP-B mRNA, while SP-B mRNA was maintained in alveolar cell populations close to vascular structures. To determine whether increased bronchiolar expression of SP-B mRNA during hyperoxia was a specific response, the abundance of CC10 mRNA (a Clara cell protein) was assessed. CC10 mRNA was detected in tracheal, bronchial, and bronchiolar, but not alveolar epithelium and was decreased upon exposure to hyperoxia. Immunocytochemistry demonstrated that SP-B proprotein was detected in bronchial, bronchiolar, and alveolar epithelial cells with staining increased in the bronchial and bronchiolar epithelium upon exposure to hyperoxia. SP-B gene expression in the respiratory epithelium is regulated at a pretranslational level and occurs in a cell specific manner during hyperoxic injury in the mouse.


Sign in / Sign up

Export Citation Format

Share Document