Development of a Small Aviation Two-stroke Kerosene Engine Fuel Injection Controller

2019 ◽  
Vol 13 ◽  
Author(s):  
Linlin Chen ◽  
Qun Sun ◽  
Weidong Gao ◽  
Chong Wang

Background: The study of kerosene fuel for gasoline engines is of great significance to the supply, management, storage and transportation of military fuel, as well as its safety. Small aviation two-stroke kerosene engine fuel injection controller is the key technology of kerosene engines. It is very important to improve the performance of kerosene engine by controlling the air-fuel ratio accurately Objective: The initial injection pulse spectrum was firstly obtained by numerical calculation in the absence of kerosene injection pulse spectrum, and then the injection controller was designed based on the initial injection pulse spectrum. Methodology:: Firstly, a numerical model of the whole engine was established by using BOOST software. The air mass flow data of the inlet was obtained through numerical calculation. The amount of initial engine fuel injection was calculated according to the requirements of air-fuel ratios in each working condition, from which an initial injection pulse spectrum was obtained. Then, based on Freescale 16-bit embedded micro-controller MC9S12DP512, a kerosene engine fuel injection controller was developed, together with the circuit was also designed. According to the initial fuel injection pulse spectrum, a two-dimensional interpolation algorithm was developed by using assembly language and C language mixed programming, and the anti-electromagnetic interference ability of the controller was further enhanced. Finally, the accuracy of the initial injection pulse spectrum and the performance and reliability of the injection controller of the kerosene engine were verified by the kerosene engine bench test. Conclusion: The experimental results show that the numerical model was accurate, and the development time of the injection controller was shortened by using the numerical model to calculate the initial injection pulse spectra. The developed controller was stable and reliable, which can meet the control requirement.

2020 ◽  
Vol 14 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Zhenyou Wang ◽  
Qun Sun ◽  
Hongqiang Guo ◽  
Ying Zhao

Background: The study of kerosene fuel for gasoline engines is of great significance to the supply, management, storage and transportation of military fuel, as well as its safety. Small aviation two-stroke kerosene engine fuel injection controller is the key technology of kerosene engines. It is very important to improve the performance of kerosene engine by controlling the air-fuel ratio accurately. Objective: The initial injection pulse spectrum was firstly obtained by numerical calculation in the absence of kerosene injection pulse spectrum, and then the injection controller was designed based on the initial injection pulse spectrum. Methodology: Firstly, a numerical model of the whole engine was established by using BOOST software. The air mass flow data of the inlet was obtained through numerical calculation. The amount of initial engine fuel injection was calculated according to the requirements of air-fuel ratios in each working condition, from which an initial injection pulse spectrum was obtained. Then, based on Free scale 16-bit embedded micro-controller MC9S12DP512, a kerosene engine fuel injection controller was developed, together with the circuit was also designed. According to the initial fuel injection pulse spectrum, a two-dimensional interpolation algorithm was developed by using assembly language and C language mixed programming, and the anti-electromagnetic interference ability of the controller was further enhanced. Finally, the accuracy of the initial injection pulse spectrum and the performance and reliability of the injection controller of the kerosene engine were verified by the kerosene engine bench test. Conclusion: The experimental results show that the numerical model was accurate, and the development time of the injection controller was shortened by using the numerical model to calculate the initial injection pulse spectra. The developed controller was stable and reliable, which can meet the control requirement.


2014 ◽  
Vol 488-489 ◽  
pp. 918-922
Author(s):  
Guan Qiang Ruan ◽  
Zhen Dong Zhang ◽  
Jin Run Cheng

In order to improve the performance of the diesel engine, the original engine fuel injection advance angle is optimized, and a new advance angle of fuel injection is proposed in this paper. By numerical calculation with simulation of software FIRE, the effect of different combustion chamber structures on the cylinder pressure, temperature, accumulated heat release and the parameters such as NOx mass fraction was analyzed. From the simulation results, the optimized fuel injection advance angle had greatly improved the diesel combustion and emission performance. Finally, via experimental verification, the engine with optimized fuel injection advance angle has better dynamic performance, as well as less emission than original machine.


2014 ◽  
Vol 496-500 ◽  
pp. 1248-1251 ◽  
Author(s):  
Jia Jun Wang ◽  
Jun Wei Tao ◽  
Hong Da Zhang ◽  
Jin Bo Guo

Quasi-homogeneous lean mixture combustion technology can take full advantages of lean-combustion, and help reduce the engine fuel consumption and emissions. Quasi-Homogeneous Lean-burn engine Control System, combined virtual instruments with engine electronic control technology, can precisely control air-fuel ratio injection, timing, fuel injection pulse and ignite on timing, which provides a reliable and convenient platform for the engine lean-burning performance tests..


2019 ◽  
Vol 15 (2) ◽  
pp. 523-536
Author(s):  
Jinliang Liu ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jiawei Wang

Purpose The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams. Design/methodology/approach Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated. Findings The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative. Originality/value The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.


2018 ◽  
Vol 206 ◽  
pp. 02009 ◽  
Author(s):  
Jianxin Ding ◽  
Qingzhou Yang

The aggregate generation of concrete is one of the important problems in concrete mesoscopic mechanics. Firstly, the mesoscopic numerical model with spherical aggregates is obtained by the method of excluding the occupied space, and fully-graded concrete model of high aggregate content can be quickly generated. Then, based on the spherical aggregate model, the generation method of random convex polyhedral aggregates is proposed. Finally, a full-graded concrete model with spherical aggregates is shown in Case 1 and a cylindrical concrete model with random convex polyhedral aggregates is shown in Case 2. The result shows that the aggregates are equally distributed in the concrete models which can be used in the study of mesoscopic numerical calculation.


2013 ◽  
Vol 724-725 ◽  
pp. 1413-1416
Author(s):  
Hui Cong Li ◽  
Zhe Wang ◽  
Zhao Lei Yin ◽  
Tong Zhang

A starting experiment has been conducted to investigate the effect of ignition timing on the starting characteristics for linear engine designed by the research group independently. The fuel injection pulse and ignition timing are controlled by the electronic control unit (ECU) which is developed based on the piston displacement. The combustion characteristics of the engine in starting process are studied based on the cylinder pressure measured by the transient pressure sensor. The result shows that the best ignition timing for linear engine starting is 2.4mm~2.8mm when the fuel injection pulse is 5.4ms and this best region of ignition timing is also meet the requirement of the combustion in the next several cycles.


2008 ◽  
Author(s):  
Peter W. Hou ◽  
Thomas W. Nichols ◽  
Keith T. Miller ◽  
Joshua J. Bennett

Author(s):  
Prasad Divekar ◽  
Qingyuan Tan ◽  
Xiang Chen ◽  
Ming Zheng ◽  
Ying Tan

Diesel engine fuel injection control is presented as a feedback based online optimization problem. Extremum seeking (ES) approach is used to address the online optimization formulation. The cost function is synthesized from extensive experimental investigations such that the indicated thermal efficiency of the engine is maximized while minimizing the NOx emissions under external boundary conditions. Knowledge of the physical combustion and emission formation process based on a pre-calibrated non-linear engine model output is used to determine the ES initial control input to minimize the seeking time. The control is demonstrated on a hardware-in-the-loop engine simulator bench.


Sign in / Sign up

Export Citation Format

Share Document