scholarly journals The Epithelial-Mesenchymal Interaction Plays a Role in the Maintenance of the Stem Cell Niche of Mouse Incisors via Fgf10 and Fgf9 Signaling

2008 ◽  
Vol 2 (1) ◽  
pp. 111-115
Author(s):  
Tamaki Yokohama-Tamaki ◽  
Naoki Fujiwara ◽  
Shunichi Shibata ◽  
Satoshi Wakisaka ◽  
Hidemitsu Harada

The continuous eruption of mouse incisors throughout life is maintained by adult stem cells in the apical end. In these teeth, the continuous expression of Fgf10 in the mesenchyme plays a role in the maintenance of the epithelial stem cell compartment, referred to as the "apical bud." However, little is known about the epithelial signaling that induces and maintains Fgf10 expression. Focusing on the epithelial-mesenchymal interaction during tooth development, we thoroughly investigated candidates expressed in the apical bud. In situ hybridization and immunostaining showed that Fgf9 mRNA and protein were detected in the basal epithelium, stellate reticulum, and inner enamel epithelium of the apical bud. Recombinant Fgf9 protein stimulated cell proliferation in cultures of apical end mesenchyme. Furthermore, Fgf9- releasing beads inhibited apoptosis in mesenchymal tissue cultures and maintained the expression of Fgf10. On the other hand, Fgf10-releasing beads induced Fgf9 expression in cultures of apical buds. Taken together, these results suggest that the stem cell niche in growing incisors is maintained by an epithelial mesenchymal interaction via Fgf9 and Fgf10 signaling.

2011 ◽  
pp. 35-55 ◽  
Author(s):  
Yoshiko Matsumoto ◽  
Hiroko Iwasaki ◽  
Toshio Suda

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 559-559
Author(s):  
Sarah Rivkah Vaiselbuh ◽  
Morris Edelman ◽  
Jeffrey Michael Lipton ◽  
Johnson M. Liu

Abstract Abstract 559 Introduction: Different cellular components of the normal hematopoietic niche have been identified. However, the niche for malignant hematopoiesis remains to be elucidated. Recent work of other groups has suggested that hematopoietic stem cells (HSC) within the bone marrow anchor themselves in place by attaching to osteoblasts and/or vascular sinusoid endothelial cells. We have recently identified mesenchymal stem cells (MSC) as niche-maker cells and found a crucial role of the SDF-1/CXCR4 axis in this process. Stromal Derived Factor-1 (SDF-1/CXCL12) regulates stem cell trafficking and the cell cycle via its receptor CXCR4. Methods: Polyurethane scaffolds, coated in vitro with human bone marrow MSC, were implanted subcutaneously in non-irradiated NOD/SCID mice. CD34+ HSC or primary AML cells (from a leukapheresis product) were injected either in situ or retro-orbitally in the mice and analyzed for engraftment. The mice were treated twice per week with in situ injections of SDF-1, AMD3100 (a CXCR4 antagonist) or PBS (control). After 2 to 4 weeks, the scaffolds were processed and evaluated for cell survival in the mesenchymal niche by immunohistochemistry. Results: We created in vitro MSC-coated scaffolds that retained inoculated AML cells in the presence of SDF-1, while AML cells seeded on empty scaffolds were not retained. In vivo in NOD/SCID mice, the MSC-coated scaffolds, in the presence of SDF-1 enabled homing of both in situ injected normal CD34+ HSC and retroorbital- or in situ injected primary human AML cells. The scaffolds were vascularized and showed osteoclasts and adipocytes present, suggestive of an ectopic human bone marrow microenvironment in the murine host. Finally, the SDF-1-treated scaffolds showed proliferation of the MSC stromal layer with multiple adherent AML cells, while in the AMD3100-treated scaffolds the stromal lining was thin and disrupted at several points, leaving AML cells free floating in proximity. The PBS-treated control-scaffold showed a thin single cell MSC stromal layer without disruption, with few AML cells attached. Conclusion: The preliminary data of this functional ectopic human microenvironment in NOD/SCID mice suggest that AMD3100 (a CXCR4 antagonist) can disrupt the stem cell niche by modulation of the mesenchymal stromal. Further studies are needed to define the role of mesenchymal stem cells in maintaining the hematopoietic/leukemic stem cell niche in vivo. In Vivo Leukemia Stem Cell Niche: (A) Empty polyurethane scaffold. (B)Vascularization in SQ implanted MSC-coated scaffold (s) niche in NOD/SCID mice. (C) DAB Peroxidase (brown) human CD45 positive nests of AML cells (arrows) 1 week after direct in situ AML injection. (D) Human CD45 positive myeloid cells adhere to MSC in vivo (arrows). Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 224 (3) ◽  
pp. 807-816 ◽  
Author(s):  
Young-Il Yang ◽  
Hyeong-In Kim ◽  
Min-Young Choi ◽  
Sung-Hee Son ◽  
Min-Jeong Seo ◽  
...  

2015 ◽  
Vol 135 (11) ◽  
pp. 2611-2622 ◽  
Author(s):  
Elisa Carrasco ◽  
María I. Calvo ◽  
Alfonso Blázquez-Castro ◽  
Daniela Vecchio ◽  
Alicia Zamarrón ◽  
...  

2011 ◽  
Vol 11 ◽  
pp. 1762-1769 ◽  
Author(s):  
A. N. Schüring ◽  
J. Braun ◽  
S. Wüllner ◽  
L. Kiesel ◽  
M. Götte

Background. Proliferation and differentiation of the endometrium are regulated by estrogen and progesterone. The enormous regenerative capacity of the endometrium is thought to be based on the activity of adult stem cells. However, information on endocrine regulatory mechanisms in human endometrial stem cells is scarce. In the present study, we investigated the expression of ERα, ERβ, and PR in clonal cultures of human endometrial stem cells derived from transcervical biopsies.Methods. Endometrial tissue of 11 patients was obtained by transcervical biopsy. Stromal cell suspensions were plated at clonal density and incubated for 15 days. Expression of ERα, ERβand PR was determined by qPCR prior to and after one cloning round, and normalized to 18 S rRNA expression.Results. Expression of ERαand ERβwas downregulated by 64% and 89%, respectively ( and ). In contrast, PR was not significantly downregulated, due to a more heterogenous expression pattern.Conclusions. Culture of human endometrial stroma cells results in a downregulation of ERαand ERβ, while expression of PR remained unchanged in our patient collective. These results support the hypothesis that stem cells may not be subject to direct stimulation by sex steroids, but rather by paracrine mechanisms within the stem cell niche.


2017 ◽  
Author(s):  
Wei Dai ◽  
Amy Peterson ◽  
Thomas Kenney ◽  
Denise J. Montell

AbstractAdult stem cells commonly give rise to transit-amplifying progenitors, whose progeny differentiate into distinct cell types. Signals within the stem cell niche maintain the undifferentiated state. However it is unclear whether or how niche signals might also coordinate fate decisions within the progenitor pool. Here we use quantitative microscopy to elucidate distinct roles for Wnt, Hedgehog (Hh), and Notch signalling in progenitor development in the Drosophila ovary. Follicle stem cells (FSCs) self-renew and produce precursors whose progeny adopt distinct polar, stalk, and main body cell fates. We show that a steep gradient of Wnt signalling maintains a multipotent state in proximally located progenitor cells by inhibiting expression of the cell fate determinant Eyes Absent (Eya). A shallower gradient of Hh signalling controls the proliferation to differentiation transition. The combination of Notch and Wnt signalling specifies polar cells. These findings reveal a mechanism by which multiple niche signals coordinate cell fate diversification of progenitor cells.


2021 ◽  
Vol 8 (8) ◽  
pp. 108
Author(s):  
Mohamed Abdul-Al ◽  
George Kumi Kyeremeh ◽  
Morvarid Saeinasab ◽  
Saeed Heidari Keshel ◽  
Farshid Sefat

The cornea comprises a pool of self-regenerating epithelial cells that are crucial to preserving clarity and visibility. Limbal epithelial stem cells (LESCs), which live in a specialized stem cell niche (SCN), are crucial for the survival of the human corneal epithelium. They live at the bottom of the limbal crypts, in a physically enclosed microenvironment with a number of neighboring niche cells. Scientists also simplified features of these diverse microenvironments for more analysis in situ by designing and recreating features of different SCNs. Recent methods for regenerating the corneal epithelium after serious trauma, including burns and allergic assaults, focus mainly on regenerating the LESCs. Mesenchymal stem cells, which can transform into self-renewing and skeletal tissues, hold immense interest for tissue engineering and innovative medicinal exploration. This review summarizes all types of LESCs, identity and location of the human epithelial stem cells (HESCs), reconstruction of LSCN and artificial stem cells for self-renewal.


2016 ◽  
Author(s):  
Leili Shahriyari ◽  
Ali Mahdipour–Shirayeh

AbstractStudying the stem cell niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. Recently, it has been observed that there are two groups of stem cells in the stem cell niche collaborating with each other to maintain tissue homeostasis. One group comprises the border stem cells, which is responsible to control the number of non-stem cells as well as stem cells. The other group, central stem cells, regulates the stem cell niche. In the present study, we develop a bi-compartmental stochastic model for the stem cell niche to study the spread of mutants within the niche. The analytic calculations and numeric simulations, which are in perfect agreement, reveal that in order to delay the spread of mutants in the stem cell niche, a small but non-zero number of stem cell proliferations must occur in the central stem cell compartment. Moreover, the migration of border stem cells to the central stem cell compartment delays the spread of mutants. Furthermore, the fixation probability of mutants in the stem cell niche is independent of types of stem cell division as long as all stem cells do not divide fully asymmetrically. Additionally, the progeny of central stem cells have a much higher chance than the progeny of border stem cells to take over the entire niche.


2020 ◽  
Vol 71 (2) ◽  
pp. 211-213
Author(s):  
K. Sato ◽  
S. Chitose ◽  
K. Sato ◽  
F. Sato ◽  
T. Kurita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document