scholarly journals Transformation of Antisense Chalcone Synthase (CHS) Gene into Lotus (Nelumbo Nucifera Gaertn.) by Particle Bombardment

2017 ◽  
Vol 11 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Saetiew Kanjana ◽  
Ano Prissadang ◽  
Parinthawong Nanglak ◽  
Arunyanart Sumay

Chalcone synthase (CHS) is a key enzyme in the flavonoid biosynthesis pathway. CHS genes were cloned from genomic DNA and cDNA from the petals of 'Buntharik' white lotus and 'Sattabangkacha' pink lotus by the PCR technique using a specific primer of the CHS gene designed from the GenBank database. Semi-quantitative RT-PCR analysis revealed that the highest CHS gene expression was found in the early budding stage of the pink lotus and was reduced in later stages. Shoot tips from embryos of Buntharik and Rachinee lotus were used to induce shoot clusters by cultivation on a MS medium supplemented with 40 µM NAA and 0.5 µM TDZ for 8 weeks and a MS medium supplemented with 50 µM BA for 8 weeks. An antisense CHS gene (450 bp) from the cDNA of Buntharik lotus was used to construct a plant transformation vector; pCAMBIA1302CHSA. The vector construct was transformed into Buntharik and Rachinee shoot clusters by particle bombardment. After transformant selection and regeneration, two transformants of Buntharik shoot clusters showed GFP green spots and existence of the GFP gene and hptII gene in the genomic DNA amplified by the PCR technique. In the Rachinee transformants, 3 of 5 showed the GFP green spots and the GFP and hptII genes were identified in amplification by PCR. After CHS gene expression analyses by semi-quantitative RT-PCR, two transformed Rachinee shoot clusters had a reduction in CHS gene expression.

1996 ◽  
Vol 16 (1) ◽  
pp. 27-37 ◽  
Author(s):  
L Gabou ◽  
M Boisnard ◽  
I Gourdou ◽  
H Jammes ◽  
J-P Dulor ◽  
...  

ABSTRACT cDNA clones coding for rabbit prolactin were isolated from a pituitary library using a rat prolactin RNA probe. One cDNA contained 873 bases including the entire coding sequence of rabbit prolactin, its signal peptide and the 5′ and 3′ untranslated regions of 44 and 145 nucleotides respectively. The deduced amino acid sequence of the cloned prolactin cDNA presented a 93–78% identity with mink, porcine and human prolactins. The prolactin gene transcription was investigated by RT-PCR analysis in several organs of midlactating New Zealand White rabbits. The ectopic transcription of the prolactin gene was examined in more detail in the mammary gland. A strong PCR signal was detected in the mammary gland of virgin does and was also observed during pregnancy and at the beginning of lactation. This PCR signal was very weak in mid-lactating and absent in post-weaning mammary gland.


BioTechniques ◽  
1996 ◽  
Vol 21 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Tamara Hiller ◽  
Linda Snell ◽  
Peter H. Watson

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22016-e22016
Author(s):  
F. L. Baehner ◽  
J. Anderson ◽  
C. Millward ◽  
C. Sangli ◽  
C. Quale ◽  
...  

e22016 Background: Tumor gene expression analysis using the Recurrence Score (RS) assay is frequently used in ER+ breast cancer. Manual microdissection is performed in cases where biopsy cavities (BxC) are present in the submitted specimen. The objective of this was to characterize by quantitative RT-PCR the impact of BxC on 21 gene expression profiles and the RS. Methods: 48 (15 well, 18 moderate, and 15 poorly differentiated) breast cancers were evaluated for gene expression differences between whole sections (WS; containing BxC) and enriched tumor (ET; BxC excluded). Standardized quantitative RT-PCR analysis for the 21 Oncotype DX genes was performed; reference normalized gene expression measurements ranged from 0 to 15, where each 1-unit reflects an approximate 2-fold change in RNA. Analyses of individual genes and the RS were performed on the entire sample set and stratified by tumor grade. Correlation analyses used Pearson's R, concordance analysis used Lin's sample concordance and paired t- tests to characterize differences. Results: There were statistically significant differences in reference normalized gene expression between ET and WS in 6 genes: BAG1 (ET-WS: 0.13 units, p=0.0025), CD68 (ET-WS: -0.64 units, p<0.0001), ER (ET-WS: 0.29 units, p=0.0012), GSTM1 (ET-WS: 0.18 units p=0.0025), STK15 (ET-WS: -0.18 units, p=0.0041) and STMY3 (ET-WS: 0.62 units, p<0.0001). Expression of the macrophage marker CD68 was higher and expression of ER was lower in WS containing BxC. The correlation (0.95) and concordance (0.92) were generally high between WS and ET for RS overall however among moderately differentially tumors, there was a statistically significant mean increase in RS for WS of 3.3 units (p = 0.0012) while among poorly differentiated tumors there was a trend toward a statistically significant decrease in RS for WS of 2.2 units (p=0.0569). Conclusions: Histologic identification of invasive carcinoma and exclusion of BxC is essential for precise RS assessment. Inclusion of BxC in breast cancer specimens is associated with significant changes in the expression of individual genes and impacts the RS. Removal of BxC from breast cancer specimens assessed for gene expression levels is warranted. [Table: see text]


2003 ◽  
Vol 15 (3) ◽  
pp. 258-262 ◽  
Author(s):  
Hisashi Ida ◽  
Sharon A. Boylan ◽  
Andrea L. Weigel ◽  
Leonard M. Hjelmeland

To evaluate the age-related changes in gene expression occurring in the complex of retinal pigmented epithelium, Bruch’s membrane, and choroid (RPE/choroid), we examined the gene expression profiles of young adult (2 mo) and old (24 mo) male C57BL/6 mice. cDNA probe sets from individual animals were synthesized using total RNA isolated from the RPE/choroid of each animal. Probes were amplified using the Clontech SMART system, radioactively labeled, and hybridized to two different Clontech Atlas mouse cDNA arrays. From each age group, three independent triplicates were hybridized to the arrays. Statistical analyses were performed using the Significance Analysis of Microarrays program (SAM version 1.13; Stanford University). Selected array results were confirmed by semi-quantitative RT-PCR analysis. Of 2,340 genes represented on the arrays, ∼60% were expressed in young and/or old mouse RPE/choroid. A moderate fraction (12%) of all expressed genes exhibited a statistically significant change in expression with age. Of these 150 genes, all but two, HMG14 and carboxypeptidase E, were upregulated with age. Many of these upregulated genes can be grouped into several broad functional categories: immune response, proteases and protease inhibitors, stress response, and neovascularization. RT-PCR results from six of six genes examined confirmed the differential change in expression with age of these genes. Our study provides likely candidate genes to further study their role in the development of age-related macular degeneration and other aging diseases affecting the RPE/choroid.


Sign in / Sign up

Export Citation Format

Share Document