scholarly journals Numerical Analysis of Long-Span Cable-Stayed Bridge in the Construction Phase

2015 ◽  
Vol 9 (1) ◽  
pp. 896-905 ◽  
Author(s):  
Xue Chengfeng ◽  
Liu Laijun ◽  
Wu Fangwen ◽  
Yang Caofang

The fabrication and erection of cable-stayed bridges involve major changes in structure configuration through the addition and removal of structure components. In every stage of the construction process, adequate information on the constructed structure is important to determine the real structure situation for the analysis of errors and to verify construction requirements. The ultimate goals are to meet construction needs and identify the effects of modification in subsequent construction procedures. The final configuration of the structure is strongly dependent on the construction and fabrication procedures. In this regard, developing an FEA model to simulate the actual construction processes is necessary to determine the performance of a bridge under external loads. In this study, a general methodology for construction processes is presented to simulate a cable-stayed bridge. The stage-by-stage construction of the Sutong Bridge is simulated with ANSYS software package. The tensions of cables are realized with ANSYS parametric design language, element birth and death function, and mutliframe restart function. The objective of the construction stage simulation is to identify stresses and deformations of the steel box girder and the concrete towers, as well as the cable tension stress, to meet the design requirements. Results of the construction stage analysis showed that the temperature method could simulate the adjustment of the inclined cable force successfully, and the global stiffness of the Sutong Bridge was very small before closure. These findings served as the initial data for a dynamic research on the Sutong cable-stayed bridge.

2013 ◽  
Vol 455 ◽  
pp. 220-223
Author(s):  
Yu Li ◽  
Sen Wang ◽  
Yan Yang Che

Based on the wind tunnel experiment for aerostatic force of section model of Jianghai direct ship channel bridge of Hongkong-zhuhai-macau great bridge in construction stage, one calculation program considering the geometric nonlinearity and aerostatic nonlinearity is prepared by using ANSYS parametric design language in order to calculate the nonlinear aerostatic response for long-span cable-stay bridges. Then, the FEA model of Jianghai direct ship channel bridge of Hongkong-zhuhai-macau great bridge in construction stage is established to analyze the three-dimensional nonlinear aerostatic stability. And the aerostatic response with different position of bridge is also calculated. The research result indicates that the aerostatic instability can not occur in Jianghai direct ship channel bridge of Hongkong-zhuhai-macau great bridge in its construction stage. And, the max torsion deformation, transverse and vertical displacement of construction stage occur in the terminal edge of both left and right span and decreases gradually near to main tower.


2018 ◽  
Vol 19 (01) ◽  
pp. 1940010 ◽  
Author(s):  
Yan-Chun Ni ◽  
Qi-Wei Zhang ◽  
Jian-Feng Liu

Modal identification aims at identifying the dynamic properties including natural frequency, damping ratio, and mode shape, which is an important step in further structural damage detection, finite element model updating, and condition assessment. This paper presents the work on the investigation of the dynamic characteristics of a long-span cable-stayed bridge-Sutong Bridge by a Bayesian modal identification method. Sutong Bridge is the second longest cable-stayed bridge in the world, situated on the Yangtze River in Jiangsu Province, China, with a total length of 2 088[Formula: see text]m. A short-term nondestructive on-site vibration test was conducted to collect the structural response and determine the actual dynamic characteristics of the bridge before it was opened to traffic. Due to the limited number of sensors, multiple setups were designed to complete the whole measurement. Based on the data collected in the field tests, modal parameters were identified by a fast Bayesian FFT method. The first three modes in both vertical and transverse directions were identified and studied. In order to obtain modal parameter variation with temperature and vibration levels, long-term tests have also been performed in different seasons. The variation of natural frequency and damping ratios with temperature and vibration level were investigated. The future distribution of the modal parameters was also predicted using these data.


2012 ◽  
Vol 517 ◽  
pp. 817-823
Author(s):  
Zhong San Li ◽  
Jun Qing Lei ◽  
Dong Huang Yan

In order to improve the construction control precision of long-span hybrid girder cable-stayed bridge, the design parameters such as the weight of girder, the cable tensile force and the stiffness of cable are conducted sensitivity analysis through computing and comparing the influences of these parameters on the deflection of girders, the stress of girders and the cable force in the bridge's completion state. It was shown by the computation results that the main parameters of long-span hybrid girder cable-stayed bridge are the weight of girder and the cable tensile force, the stiffness of cable has a little influence on the completion state of the bridge. With this approach, through modifying the main parameters, while ignoring the influences of the secondary ones, the Jingyue Yangtze River Highway Bridge construction control has been successfully done. The test results show that the cable force and the contour of the bridge are in good state. They are both in the range of control, the relative error of the cable force is less than 3% and the elevation deviation is less than 5mm.


2010 ◽  
Vol 163-167 ◽  
pp. 85-89
Author(s):  
Jin Zhang ◽  
Xin Chang Luo ◽  
Jian Guo Cai ◽  
Jian Feng ◽  
Xiao Jing Yang

Taking Xinjiang Exhibition Center Roof as an example, three models ("No construction stage" model, "Stretching on the ground" model and "Flow construction stage" model) were set up and analyzed with consideration of different segmented construction methods. The results show that the effect of the segmented construction method on the prestressed state of long-span truss string structures is significant. For the "No construction stage" model, the maximal cable force during construction is the largest among three models, while there are great differences between each cable force. However, the maximal displacement of sliding ends is the smallest among three models. For the "Stretching on the ground" model, the tension control force is the most uniform. This is because the cable of every truss is pre-tensioned independently, which causes no influence on other cables. For the "Flow construction stage" model, the maximal displacement of sliding ends and the uniformity of cable forces of the truss string structures are between those given by the other two models.


2020 ◽  
Vol 6 (11) ◽  
pp. 2159-2174
Author(s):  
Theint Theint Thu Soe ◽  
San Yu Khaing

The proposed bridge, which is cable stayed bridge crosses the Hlaing River that flows through Western Yangon. It was completed in 2000 and is currently used to connect Insein Township with Hlaing Tharyar Township. It has the 20 years’ service life. It requires the inspection and the evaluation of the real condition of the structure. As cable element plays an important role in cable structures, evaluation of the real state of the stay cable is one of the main focuses of the cable stayed bridge. Firstly, in the research work all cables are inspected to evaluate the current condition of the cables with included visual inspection and vibration-based cable force measurement method. With the help of static and moving load analysis, the effect of force change cables in which the successive force changes are considered, and the possible cable loss effect on the structural behavior of the bridge are also investigated. The finite element model of the cable stayed bridge is developed based on the geometric shape and material properties from MOC and is modelled with finite element software MIDAS Civil. The tension forces obtained by inspection over years (2000 to 2018) using vibration-based measurements method are compared with the measured intact cable forces. According to the results of the data analysis, it is observed that the cables force variations of the seven cables are abnormal conditions. In order to evaluate the condition of a bridge effected by cable force variation, the two parameters are considered; percentage increase in tension stress of all cables and percentage increase in deflection of the deck. The present study describes the structural response of the bridge in order to evaluate the actual safety of the bridge with abnormal force change cables, and also examines the consequences of one cable failure. Doi: 10.28991/cej-2020-03091609 Full Text: PDF


2011 ◽  
Vol 243-249 ◽  
pp. 1567-1572
Author(s):  
Tao Zhang ◽  
Hai Feng Bai

Optimum design for a cable-stayed bridge structure is very complicated because of large number of design variables. Use of ANSYS parametric design language in optimizing such structure consumes little computational time. The finished dead state analysis for single pylon double cable plane cable-stayed bridge with 120m long is performed. Mechanics equivalent are developed for the main pylon with concrete-filled steel tube. Prestress girder finite element model is established also. The theory of minimum bending strain energy is used in deriving the objective function as the quadratic form of the post-tensioning cable forces. In addition, the maximum deflection of the pylon and the maximum stresses of the main girder are both implemented in the optimization model. Optimized cable forces are found by optimization. Calculated results show that after the optimization, the cable force slightly changes, yet the internal force state under dead load remarkably improves, the bending stress of girder as well as the deflection of pylon significantly decreases. All these variations are satisfied for the limit value of engineering code. The results obtained revealed that the method presented indeed leads to optimal structural performance for the cable-stayed bridge in particular, and might be a useful reference for the design of other similar bridges.


Sign in / Sign up

Export Citation Format

Share Document