scholarly journals Producing Sustainable Concrete using Nano Recycled Glass

2021 ◽  
Vol 15 (1) ◽  
pp. 236-243
Author(s):  
Zena K. Abbas ◽  
Hayder A. Mahdi ◽  
Bassam A. Tayeh

Background: Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials. Objective: Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength. Methods: A nano recycled glass powder is prepared by crushing and storming a glass bottle to obtain a Blaine surface area of approximately 28 m2/g and conforming to the chemical requirements for natural pozzolana class N, according to ASTM C618. The outcome of using nano recycled glass for theaddition and replacement of ordinary Portland cement weight on the compressive and flexural strengths of concrete at 7, 28, and 90 days is investigated. Results: The concrete mixes with 2.5%, 5%, 7.5%, and 10% replacements of cement by nano recycled glass powder show improvements in compressive and flexural strengths of up to 12.77% and 7.66%, respectively, at 28 days. Meanwhile, mixes with the addition of 5% nano glass powder show best improvements in compressive and flexural strengths of up to 11.49% and 7.46%, respectively.

2021 ◽  
Vol 11 (2) ◽  
pp. 629
Author(s):  
Sergio A. Zamora-Castro ◽  
Rolando Salgado-Estrada ◽  
Luis Carlos Sandoval-Herazo ◽  
Roberto Angel Melendez-Armenta ◽  
Erick Manzano-Huerta ◽  
...  

The use of concrete in civil infrastructure is highly demanded in structural and nonstructural elements. However, the high production of concrete could lead to severe pollution in the world. This pollution can be decreased using sustainable materials mixed with cement to obtain sustainable concrete. These sustainable materials include reinforcing fibers (e.g., steel, polypropylene, carbon fibers), recycled materials (e.g., tire rubber, crushed glass, plastic, industrial waste) as well as organic and inorganic elements as concrete aggregates and reinforcement elements. The sustainable construction materials can reduce the amount constitutive elements of concrete required for civil constructions. In addition, some sustainable materials added to cement could improve some properties of the concrete, like the compressive and flexural strength of concrete structural elements. Thus, the maintenance requirements or early replacement of these structural elements could be decreased. This review presents recent investigations about the performance of different sustainable concrete types. In addition, we include the effects on the mechanical properties of the concrete caused by the incorporation of several sustainable materials. In addition, recommendations for the use and testing of sustainable concrete are reported. These materials have potential applications in the sustainable concrete infrastructure in future smart cities.


2019 ◽  
Vol 303 ◽  
pp. 05001
Author(s):  
Mónica Bedoya ◽  
Federico Rivera ◽  
María Rico ◽  
David Vélez ◽  
Andrés Urrego ◽  
...  

It is clear that construction and demolition wastes (CDW) are constantly increasing throughout the world and these wastes can be used effectively to minimize the consumption of natural resources in the manufacture of more sustainable concrete. The CDW occupy an important segment of world waste production and its generation reached approximately 3 billion tons in 2012 in 40 countries [1]. Although this topic has been studied in the world, it is still valid for the reuse of waste that is constantly increasing, and although in many countries there are already examples of its use this type of concrete in Colombia and in the Medellìn city lacks applications. This project proposes the application of a sustainable concrete made with CDW and coal ash in the Medellín city for its implementation in the construction of urban furniture. A university community diagnosis of the needs in terms of furnishing was made. With the design reached, a modular chair was proposed to enable spaces within the university. The mechanical characteristics of the concrete and the design of the chair are evaluated and a simulation is done through finite elements to evaluate the viability of the proposed concrete, finding that with these properties is possible to manufacture durable and sustainable furniture that serves as an example for the application of sustainable materials


Author(s):  
Venkatesan B ◽  
Kannan V ◽  
Sophia M

This paper aims to assess the mechanical and long-term durability performance of Reactive Powder Concrete (RPC) containing Granite Powder (GrP) as cement replacement and waste Glass Powder (GP) as quartz sand replacement. The workability and mechanical behaviour of RPC containing various proportions of GrP and GP are assessed for different w/b ratios (0.3, 0.35, 0.4 and 0.45). The water resistance and tightness of RPC are measured by monitoring the electrical resistivity, water absorption, sorptivity and chloride migration over a one year period. Results reveal that substitution of GrP and GP at optimum levels of 15% and 30% respectively enhances the performance of RPC with the achievement of satisfiable workability at a 0.35 w/b ratio. A significant increase in the resistance towards chloride penetration and electrical resistivity was also observed with increasing ages. Thus, glass powder and granite powder can be considered as alternative construction materials providing economical and ecological efficiency.


Concrete is the most essential construction materials in all over the world. It is necessary to search the cheaply obtainable material as admixture which might be partially replaced cement in the production of concrete. This project is an experimental investigation of the neem leaves ash as partial replacement for cement also fly ash is used for partial replacement of cement. The neem leaves were dried, burnt and heated in the furnace to produce Neem leaves Ash, which was discovered to posses Pozzolanic properties.the ordinary Portland cement was replaced by neem ash by 5%,10%,15%,20% and 25% by weight also flash replaced by 15%,20%,25% and 30% the cubes were crushed to know the comparative strength of the concrete at different curing days. The last result showed that workability and strength properties of the concrete was depended on water cement ratio, total days of curing, the percentage of replacement of Neem leaves ash for OPC . I. This project it was noticed that the result of 5% NLA and 15% fly ash and 10% NLA and 20% of fly ash were gradually increasing the strength at 28 days. Neem leaves play a vital role and behaviour of Neem leaves ash and flash used concrete will be studied


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Seghir Ammari ◽  
Mohammed Bachir Tobchi ◽  
Yahia Amrani ◽  
Anouer Mim ◽  
Madani Bederina ◽  
...  

Purpose This study is part of the valorization of local materials and the reuse of industrial waste in construction. This study aims to improve the physical-mechanical properties of sand concrete. This work is a continuation of previous studies conducted on sand concrete, the purpose of which is to introduce industrial waste into this material. For this purpose, a glass waste in powder form is added. Design/methodology/approach This study is focused on the effect of adding glass powder (GP) whose mass percentage varies from 0 to 40% with an interval of 10% to target the right composition that ensures the best compromise between the characteristics studied. Findings The results found show that the workability and density of the studied concretes decreased with increasing GP dosage. Indeed, the optimal addition which constitutes the best compromise between the studied properties is 10% of GP. Improvements of up to about 9% in the case of flexural strength and about 18% in the case of compressive strength. The thermal conductivity has been reduced by 12.74%, the thermal diffusivity which characterizes the notion of thermal inertia has been reduced by about 4% and the specific heat mass has been reduced by 7.80%. Also, the shrinkage has been reduced by about 20%. The microstructure of the studied composite shows a good homogeneity between the aggregates. Finally, the addition of GP to sand concrete gives very encouraging results. Originality/value The interest of this study is in two parts. The first one is the exploitation of local materials: dune sand, river sand and limestone filler to meet the growing demand for construction materials. And the second one is the reuse of glass waste, in the form of powder (GP), to solve the environmental problem. All this participates in the improvement of the physical-mechanical properties of sand concrete and the extent of its response to the development of an economical structural concrete.


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


Author(s):  
Pranshoo Solanki ◽  
Harsh Chauhan

This experiment was conducted to determine the utility of substituting cement with the recycled glass powder (RGP) in mortar mixtures. A total of 21 mortar mixtures were produced using various RGP (FG) ratios (CG), and fly ash (FA) powders. The mortar mixtures were used to prepare cubes which were tested for 7-and 28-day compressive strength. The substitution of cement with FG and CG in mortar resulted in reduced 7-and 28-day compressive strength values. However, the amount and type of RGP substituted for cement plays a crucial role in the determination of mortar strength. Above contraction in compressive strength was observed at an initial maturity than at the final maturity. Further, replacement of cement with Fly Ash showed increase in compressive strength up to certain content. More research and testing for the optimal percentage and size of waste glass powder that can be used is required in flowable fill.


Sign in / Sign up

Export Citation Format

Share Document