scholarly journals Dynamic Analysis of Gear and Rack Transmission System

2014 ◽  
Vol 8 (1) ◽  
pp. 662-667
Author(s):  
Xiao Yanjun ◽  
He Lihu ◽  
Zhu Jiayu ◽  
Xiao Yanchun

This paper firstly established a three-dimensional modal of gear and rack transmission system. By using finite element analysis software the model is analyzed and the first six natural frequencies of the gear and rack transmission system are acquired. According to the natural frequencies, actual working speed can be adjusted to avoid resonance. In light of the modal analysis, the transient dynamic finite element model of the gear and rack transmission system is established for the transient dynamic analysis. According to the equivalent stress contour of the gear and rack in contact progress at various times and based on transient dynamic analysis, contact strength and bending strength of the gear are verified and the maximum equivalent stress position is found, providing a theoretical basis for the optimization of the gear and rack.

2011 ◽  
Vol 317-319 ◽  
pp. 405-409
Author(s):  
An Dong Jiang ◽  
Jiang Jin ◽  
Su Yang Ma ◽  
Zheng Peng Xia ◽  
Ping Liao

Abstract. The magnetic levitation linear feed unit is a new type of machine features. In machining, the tool and workpiece interaction force will be delivered to the table and make the deformation, resulting in processing errors of machine tools, machining of precision and surface quality. In this paper we established three-dimensional finite element model of the table of feed unit, use the finite element analysis software ANSYS to analysis of the transient dynamic analysis of the pre-designed table and improve the structure of the table at the design stage and forecast performance of the table and provide a theoretical basis for structure optimization.


2014 ◽  
Vol 484-485 ◽  
pp. 272-276
Author(s):  
Fa Jun Ding

Connecting rod is the very important connection and force bearing parts of piston engine crank mechanism; work in the role of various kinds of alternating stress. Taking a general rod from Lycoming IO-360-A1B6 aero-piston engine as the analysis object, first, a 3-D finite element model of the rod is established in ANSYS Workbench. And then, considering the influence of gas pressure in cylinder after ignition acting on the connecting rod under engines rated speed conditions, through the transient dynamic analysis, find in all load steps, the maximum equivalent stress occurred at the transition zone between the shaft and little head, and received the maximum equivalent stress versus time curve, to provide numerical basis for improving high-cycle fatigue reliability of the rod. Finally, according to equivalent stress contours of the rod when gas in cylinder peak pressure occurs, initially identified rods hazardous areas,to provide foundation for the development of standard repair process.


2012 ◽  
Vol 157-158 ◽  
pp. 810-817
Author(s):  
Shuai Wang ◽  
Zong De Liu ◽  
Bin Li ◽  
Peng Duan

As an important supporting component of thrust bearing of hydropower plant, the elastic oil sump plays a vital role in the safe operation of the hydropower plant. Considering the complicated working conditions of the elastic oil sump, it is of great significance and convenience to use a method of CAE to simulate the actual working state of it. In literature, many researchers have investigated static behaviors of the elastic oil sump. However, a dynamic analysis of the oil sump has been seldom investigated formally yet. Therefore, in this study we particularly focused on investigating the dynamic behaviors of a single corrugated elastic oil sump. In this study, the finite element model of the studied oil sump is built with reasonable simplifications of the working status. Then, static and dynamic analyses of a single corrugated elastic oil sump are performed by the means of ANSYS software. Performance parameters of the sump, the initial oil pressure and dangerous region are determined through the static analysis. In the dynamic analysis, the time-history curves of VM equivalent stress and 1st /2nd/3rd principal stress of a tracked node in the crucial region are obtained. The results showed that the method of finite element analysis (FEA) suits well in the study of the stiffness properties of the elastic oil sump and the stress cycle is big enough to induce fatigue damage to which should be paid close attention.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


Author(s):  
MR Karamooz-Ravari ◽  
R Dehghani

Nowadays, NiTi rotary endodontic files are of great importance due to their flexibility which enables the device to cover all the portions of curved canal of tooth. Although this class of files are flexible, intracanal separation might happen during canal preparation due to bending or torsional loadings of the file. Since fabrication and characterization of such devices is challenging, time-consuming, and expensive, it is preferable to predict this failure before fabrication using numerical models. It is demonstrated that NiTi shape memory alloy shows asymmetric material response in tension and compression which can significantly affect the lifetime of the files fabricated from. In this article, the effects of this material asymmetry on the bending response of rotary files are assessed using finite element analysis. To do so, a constitutive model which takes material asymmetry into account is used in combination with the finite element model of a RaCe file. The results show that the material asymmetry can significantly affect the maximum von Mises equivalent stress as well as the force–displacement response of the tip of this file.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


Sign in / Sign up

Export Citation Format

Share Document