scholarly journals Cardiopulmonary Exercise Testing in Patients with Chronic Heart Failure: Prognostic Comparison from Peak VO2 and VE/VCO2 Slope

2010 ◽  
Vol 4 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Filippo Maria Sarullo ◽  
Giovanni Fazio ◽  
Ignazio Brusca ◽  
Sergio Fasullo ◽  
Salvatore Paterna ◽  
...  

Background: Cardiopulmonary exercise testing with ventilatory expired gas analysis (CPET) has proven to be a valuable tool for assessing patients with chronic heart failure (CHF). The maximal oxygen uptake (peak V02) is used in risk stratification of patients with CHF. The minute ventilation-carbon dioxide production relationship (VE/VCO2 slope) has recently demonstrated prognostic significance in patients with CHF. Methods: Between January 2006 and December 2007 we performed CPET in 184 pts (146 M, 38 F, mean age 59.8 ± 12.9 years), with stable CHF (96 coronary artery disease, 88 dilated cardiomyopathy), in NYHA functional class II (n.107) - III (n.77), with left ventricular ejection fraction (LVEF) ≤ 45%,. The ability of peak VO2 and VE/VCO2 slope to predict cardiac related mortality and cardiac related hospitalization within 12 months after evaluation was examined. Results: Peak VO2 and VE/VCO2 slope were demonstrated with univariate Cox regression analysis both to be significant predictor of cardiac-related mortality and hospitalization (p < 0.0001, respectively). Non survivors had a lower peak VO2 (10.49 ± 1.70 ml/kg/min vs. 14.41 ± 3.02 ml/kg/min, p < 0.0001), and steeper Ve/VCO2 slope (41.80 ± 8.07 vs. 29.84 ± 6.47, p < 0.0001) than survivors. Multivariate survival analysis revealed that VE/VCO2 slope added additional value to VO2 peak as an independent prognostic factor (χ2: 56.48, relative risk: 1.08, 95% CI: 1.03 – 1.13, p = 0.001). The results from Kaplan-Meier analysis revealed a 1-year cardiac-related mortality of 75% in patients with VE/VCO2 slope ≥ 35.6 and 25% in those with VE/VCO2 slope < 35.6 (log rank χ2: 67.03, p < 0.0001) and 66% in patients with peak VO2 ≤ 12.2 ml/kg/min and 34% in those with peak VO2 > 12.2 ml/kg/min (log rank χ2: 50.98, p < 0.0001). One-year cardiac-related hospitalization was 77% in patients with VE/VCO2 slope ≥ 32.5 and 23% in those with VE/VCO2 slope < 32.5 (log rank χ2: 133.80, p < 0.0001) and 63% in patients with peak VO2 ≤ 12.3 ml/kg/min and 37% in those with peak VO2 > 12.3 ml/kg/min (log rank χ2: 72.86, p < 0.0001). The VE/VCO2 slope was demonstrated with receiver operating characteristic curve analysis to be equivalent to peak VO2 in predicting cardiac-related mortality (0.89 vs. 0.89). Although area under the receiver operating characteristic curve for the VE/VCO2 slope was greater than peak VO2 in predicting cardiac-related hospitalization (0.88 vs 0.82), the difference was no statistically significant (p = 0.13). Conclusion: These results add to the present body of knowledge supporting the use of CPET in CHF patients. The VE/VCO2 slope, as an index of ventilatory response to exercise, is an excellent prognostic parameter and improves the risk stratification of CHF patients. It is easier to obtain than parameters of maximal exercise capacity and is of equivalent prognostic importance than peak VO2.

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
P Garcia Bras ◽  
A Valentim Goncalves ◽  
J Reis ◽  
T Pereira Da Silva ◽  
R Ilhao Moreira ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Cardiopulmonary exercise testing (CPET) is used for risk stratification in patients with chronic heart failure (CHF). However, there is a lack of information regarding CPET prognostic power in patients under new HF therapies such as sacubitril/valsartan, Mitraclip, IV iron or SGLT2 inhibitors. The aim of this study was to evaluate the prognostic value of CPET parameters in a contemporary subset of patients with optimal medical and device therapy for CHF. Methods Retrospective evaluation of patients with CHF submitted to CPET in a tertiary center. Patients were followed up for 24 months for the composite endpoint of cardiac death, urgent heart transplantation or left ventricular assist device. CPET parameters, including peak oxygen consumption (pVO2) and VE/VCO2 slope, were analysed and their predictive power was measured. HF events were stratified according to cut-off values defined by the International Society for Heart and Lung Transplantation (ISHLT) guidelines: pVO2 of ≤12 mL/Kg/min and VE/VCO2 slope of &gt;35. Results CPET was performed in 204 patients, from 2014 to 2018. Mean age was 59 ± 13 years, 83% male, with a mean left ventricular ejection fraction of 33 ± 8%, and a mean Heart Failure Survival Score of 8.6 ± 1.3. The discriminative power of CPET parameters is displayed in the Table. In patients with pVO2 ≤12 mL/Kg/min, the composite endpoint occurred in 18% of patients. A pVO2 value of ≤12 mL/Kg/min had a positive predictive power of 18% while pVO2 &gt;12 had a negative predictive power of 93%. Regarding VE/VCO2 slope &gt;35, the composite endpoint occurred in 13% of patients. A VE/VCO2 slope value of &gt;35 had a positive predictive power of 13% while VE/VCO2 slope &lt;35 had a negative predictive power or 94%. Conclusion Using ISHLT guideline cut-off values for advanced HF therapies patient selection, there was a reduced number of HF events (&lt;20%) at 24 months in patients under optimal CHF therapy. While pVO2 and VE/VCO2 slope are still valuable parameters in risk stratification, redefining cut-off values may be necessary in a modern HF population. Discriminative power of CPET parameters Parameters HR; 95% CI AUC p-value Peak VO2 0.824 (0.728-0.934) 0.781 0.001 Percent of predicted pVO2 0.942 (0.907-0.978) 0.774 0.002 VE/VCO2 slope 1.068 (1.031-1.106) 0.756 0.008 Cardiorespiratory optimal point 1.118 (1.053-1.188) 0.746 0.004 PETCO2 maximum exercise 0.854 (0.768-0.950) 0.775 0.003 Ventilatory Power 0.358 (0.176-0.728) 0.796 0.002 HR Hazard ratio, AUC: Area under the curve, PETCO2: end-tidal CO2 pressure


2020 ◽  
Vol 27 (3) ◽  
pp. 228-235
Author(s):  
Rafael Santiago Floriano ◽  
Alexandre Fenley ◽  
Daniel Sobral Teixeira ◽  
Leonardo da Costa Silva ◽  
Hugo Valverde Reis ◽  
...  

ABSTRACT Cardiopulmonary exercise testing (CPX) is a noninvasive method for assessing physiological changes during physical exercise. Functional capacity has been evaluated using prediction equations. However, this evaluation method may yield different outcomes when applied to a healthy male population and patients with chronic heart failure (HF). This study aimed to compare the estimated and obtained values of oxygen consumption (VO2) during CPX both at the ventilatory anaerobic threshold (VAT) and at peak exercise for healthy men and HF patients. For that, 56 men were divided into 3 groups: (1) 18 young and healthy (YG) (27±6.01 years); (2) 14 healthy older adults (OG) (61±6.3 years); and (3) 24 chronic HF patients (HFG) (53±13.6 years). CPX in cycle ergometer was administered to all individuals for determining VO2 at the VAT and peak exercise. Then, VO2 was estimated at the two moments using a prediction equation, and estimated values were compared to those obtained. Estimated VO2 was significantly higher than obtained VO2 in OG (16.9±1.8 vs. 13.1±2.1mL/kg/min) and HFG (12±6.9 vs. 8.7±2.5mL/kg/min). We found no difference between estimated and obtained VO2 for the YG (22,6±5,5 vs. 23,1±8,7mL/kg/min). The prediction equation overestimated VO2 values for older adults and HF patients. However, the YG obtained similar values than those estimated.


2019 ◽  
Vol 112 (3) ◽  
pp. 256-265 ◽  
Author(s):  
Yan Chen ◽  
Eric J Chow ◽  
Kevin C Oeffinger ◽  
William L Border ◽  
Wendy M Leisenring ◽  
...  

Abstract Background Childhood cancer survivors have an increased risk of heart failure, ischemic heart disease, and stroke. They may benefit from prediction models that account for cardiotoxic cancer treatment exposures combined with information on traditional cardiovascular risk factors such as hypertension, dyslipidemia, and diabetes. Methods Childhood Cancer Survivor Study participants (n = 22 643) were followed through age 50 years for incident heart failure, ischemic heart disease, and stroke. Siblings (n = 5056) served as a comparator. Participants were assessed longitudinally for hypertension, dyslipidemia, and diabetes based on self-reported prescription medication use. Half the cohort was used for discovery; the remainder for replication. Models for each outcome were created for survivors ages 20, 25, 30, and 35 years at the time of prediction (n = 12 models). Results For discovery, risk scores based on demographic, cancer treatment, hypertension, dyslipidemia, and diabetes information achieved areas under the receiver operating characteristic curve and concordance statistics 0.70 or greater in 9 and 10 of the 12 models, respectively. For replication, achieved areas under the receiver operating characteristic curve and concordance statistics 0.70 or greater were observed in 7 and 9 of the models, respectively. Across outcomes, the most influential exposures were anthracycline chemotherapy, radiotherapy, diabetes, and hypertension. Survivors were then assigned to statistically distinct risk groups corresponding to cumulative incidences at age 50 years of each target outcome of less than 3% (moderate-risk) or approximately 10% or greater (high-risk). Cumulative incidence of all outcomes was 1% or less among siblings. Conclusions Traditional cardiovascular risk factors remain important for predicting risk of cardiovascular disease among adult-age survivors of childhood cancer. These prediction models provide a framework on which to base future surveillance strategies and interventions.


Sign in / Sign up

Export Citation Format

Share Document