scholarly journals Effect of Adhesive Gap Setting on Fracture Resistance of All-ceramic Crowns

2020 ◽  
Vol 14 (1) ◽  
pp. 600-607
Author(s):  
Mohammed Zahran

Background: Several factors might affect the fracture resistance of all-ceramic crowns, including cement thickness. Aim: To evaluate the influence of cement thickness on the fracture resistance. Objective: To determine the effect of varying the adhesive gap thickness on the fracture loads of all-ceramic CEREC 3D molar crowns. Methods: Standardized prepared epoxy resin molar dies (Viade Inc.) were fabricated. A standard molar crown was designed using a CEREC 3D machine (Sirona Dental Systems). Twenty-four crowns were milled from Vita Mark II blocks (Vita Zahnfabrik), using adhesive gap settings of 30, 60 and 90 µm (n=8). A dual-cure resin cement (PanaviaF 2.0, Kuraray) was used to cement the crowns to their respective dies, following manufacturer's recommendation. After 1 week of storage in distilled water at 37°C, each crown was loaded in compression until complete failure in a universal testing machine (Instron 8501) and fracture loads (N) were recorded. Fractured specimens were sectioned to determine cement thickness. Sections were examined using a traveling light microscope to measure cement thickness. Data were statistically analyzed using one-way ANOVA test and Pearson's correlation at (α=0.05). Results: The mean fracture loads and standard deviation values in N were 1,267.57 (122.82), 1,225.20 (179.46) and 1,180.76 (161.77) for the crowns with 30, 60 and 90µm, respectively. ANOVA indicated no significant differences among mean fracture strength values (p = 0.55). All crowns failed in a catastrophic mode and were not repairable. Conclusions: Adhesive cement gap as achieved with three CEREC 3D settings from 30 to 90µm had no significant effect on fracture strength of crowns made from Vita Mark II blocks.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4227
Author(s):  
Samer Al-Saleh ◽  
Turki W. Aboghosh ◽  
Mousa S. Hazazi ◽  
Khalid A. Binsaeed ◽  
Abdulaziz M. Almuhaisen ◽  
...  

The aim of the study was to compare microleakage and fracture loads of all ceramic crowns luted with conventional polymer resins and polymeric bioactive cements and to assess the color stability of polymeric bioactive cements. Seventy-five extracted premolar teeth were tested for fracture loads and microleakage in all-ceramic crowns cemented with two types of polymeric bioactive cements and resin cements. In addition, the degree of color change for each cement with coffee was assessed. Thirty maxillary premolar teeth for fracture loads and thirty mandibular premolar teeth for microleakage were prepared; standardized teeth preparations were performed by a single experienced operator. All prepared specimens were randomly distributed to three groups (n = 20) based on the type of cement, Group 1: resin cement (Multilink N); Group 2: polymeric bioactive cement (ACTIVA); Group 3: polymeric bioactive cement (Ceramir). The cementation procedures for all cements (Multilink, ACTIVA, and Ceramir) were performed according to the manufacturers’ instructions. All specimens were aged using thermocycling for 30,000 cycles (5–55 °C, dwell time 30 s). These specimens were tested using the universal testing machine for fracture strength and with a micro-CT for microleakage. For the color stability evaluation, the cement specimens were immersed in coffee and evaluated with a spectrometer. Results: The highest and lowest means for fracture loads were observed in resin cements (49.5 ± 8.85) and Ceramir (39.8 ± 9.16), respectively. Ceramir (2.563 ± 0.71) showed the highest microleakage compared to resin (0.70 ± 0.75) and ACTIVA (0.61 ± 0.56). ACTIVA cements showed comparable fracture loads, microleakage, and stain resistance compared to resin cements.


2008 ◽  
Vol 9 (2) ◽  
pp. 33-40 ◽  
Author(s):  
Bandar M. A. AL-Makramani ◽  
Abdul A. A Razak ◽  
Mohamed I. Abu-Hassan

Abstract Aim The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera™ all-ceramic copings. Methods and Materials Standardized metal dies were duplicated from a prepared maxillary first premolar tooth using non-precious metal alloy (Wiron 99). Thirty Turkom-Cera™ copings of 0.6 mm thickness were then fabricated. Three types of luting agents were used: zinc phosphate cement (Elite™), glass-ionomer cement (Fuji I™), and a dual-cured composite resin cement (Panavia F™). Ten copings were cemented with each type. All copings were cemented to their respective dies according to manufacturer's instructions and received a static load of 5 kg for ten minutes. After 24 hours of storage in distilled water at 37°C, the copings were vertically loaded until fracture using an Instron Universal Testing Machine at a crosshead speed of 1 mm/minute. The mode of fracture was then determined. Results Statistical analysis carried out using analysis of variance (ANOVA) revealed significant differences in the compressive strength between the three groups (P<0.001). The mean fracture strength (in Newtons) of Turkom-Cera™ copings cemented with Elite™, Fuji I™, and Panavia F™ were 1537.4 N, 1294.4 N, and 2183.6 N, respectively. Conclusions Luting agents have an influence on the fracture resistance of Turkom-Cera™ copings. Citation AL-Makramani BMA, Razak AAA, Abu-Hassan MI. Effect of Luting Cements on the Compressive Strength of Turkom-Cera™ All-ceramic Copings. J Contemp Dent Pract 2008 February;(9)2:033-040.


2008 ◽  
Vol 9 (4) ◽  
pp. 17-25 ◽  
Author(s):  
Ilser Turkyilmaz ◽  
Suat Gokce ◽  
Emine Celik-Bagci

Abstract Aim The aim of this study was to investigate the influence of three different thicknesses of In-Ceram core on the load at fracture of all-ceramic crowns. Methods and Materials Thirty standardized crown-shaped nickel-chromium alloy dies were fabricated using a milling machine. Twenty dies were prepared with a 1 mm shoulder for Groups A and B. The only difference in the ten dies used for Group C was a smaller 0.5 mm lingual shoulder. The thicknesses of In-Ceram were 0.5 mm, 1.5 mm, and 0.75 mm for Groups A, B, and C. All all-ceramic crowns were fabricated in accordance with the manufacturer's instructions. After cementation of the crowns, their fracture resistance was tested with a universal testing machine. The load was directed to a point located 3 mm from the lingual aspect of the incisal edge at 30 degrees to the long axis of each specimen until catastrophic failure occurred. Results The mean loads at fracture for Groups A, B, and C were 1117±388 N, 2083±385 N, and 1439±368 N, respectively. No statistically significant difference in load at fracture between Groups A and C was found (p>0.05). However, the differences were statistically significant between Groups A and B (p<0.001) and Groups B and C (p<0.001). Conclusion Under the guidelines of this study, increasing the thickness of the In-Ceram core increased the fracture resistance of the all-ceramic crowns. Clinical Significance The sufficient thickness of the In-Ceram core of all-ceramic crowns is an important factor in fracture resistance. Therefore, dental practitioners should be careful in patient selection; if the horizontal overlap of a tooth to be restored is too limited, then all-ceramic crowns may not be a feasible option. Citation Gokce S, Celik-Bagci E, Turkyilmaz I. A Comparative in vitro Study of the Load at Fracture of Allceramic Crowns with Various Thicknesses of In-Ceram Core. J Contemp Dent Pract 2008 May; (9)4:017-025.


2017 ◽  
Vol 43 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Marcos Alexandre Fadanelli ◽  
Flávia Lucisano Botelho do Amaral ◽  
Roberta Tarkany Basting ◽  
Cecilia Pedroso Turssi ◽  
Bruno Salles Sotto-Maior ◽  
...  

The purpose of this study was to evaluate the effects of steam autoclave sterilization on the tensile strength of two types of resin cements used to bond customized CAD/CAM zirconia abutments onto titanium bases. Forty sets of zirconia abutments cemented to screwed titanium bases of implants analogs were divided into 4 groups (n = 10). Two groups were treated with a conventional chemically activated resin cement (ML, Multilink Ivoclar Vivadent) and the other two groups with a self-adhesive dual resin cement (RelyX U200, 3M ESPE). One group from each cement was submitted to steam autoclaving. The autoclave sterilization cycle was performed after 72 hours of cementation for 15 minutes at 121°C and 2.1 Kgf/cm2. The samples were subjected to tensile strength testing in a universal testing machine (200 Kgf, 0.5 mm/min), from which the means and standard deviations were obtained in Newtons. Results showed (via ANOVA and Tukey's test; α = 0.05) that in the absence of steam autoclaving, no difference was observed in tensile strength between the cements tested: ML: 344.87 (93.79) and U200: 280 (92.42) (P = .314). Steam autoclaving, however, significantly increased tensile strength for the ML: 465.42 (87.87) compared to U200: 289.10 (49.02) (P &lt; .001). Despite the significant increase in the ML samples (P = .013), autoclaving did not affect the tensile strength of the U200 samples (P &gt; 0.05). The authors concluded that steam autoclaving increases the mean tensile strength of the chemically activated cement compared to the dual-cure self-adhesive cement. The performance of both cements evaluated was similar if the sterilization step was disconsidered.


Cerâmica ◽  
2018 ◽  
Vol 64 (370) ◽  
pp. 284-287
Author(s):  
A. C. Piccoli ◽  
M. Borba

Abstract Different methods are available to produce all-ceramic dental prosthesis. Each processing step may introduce flaws to the material, which compromises its properties and reliability. The objective of this study was to evaluate the effect of fabrication method on the fracture behavior of prosthetic crowns produced with an alumina-based glass-infiltrated zirconia-reinforced ceramic. Two groups of all-ceramic crowns were produced according to the fabrication method of the infrastructure (IS) (n=30): IZC - IS produced by CAD-CAM; IZS - IS produced by slip-casting. The IS were veneered with porcelain and cemented to fiber-reinforced composite dies with resin cement. Crowns were loaded in compression to failure using a universal testing machine, at 1 mm/min crosshead speed and 37 ºC distilled water. Fractography was performed using stereomicroscope and SEM. Data were statistically analyzed with Student’s t test (α=0.05) and Weibull analysis. There were no significant differences among the experimental groups for fracture load (p=0.481) and Weibull modulus. For both groups, the failure mode was catastrophic failure involving IS and porcelain. It was concluded that the fabrication methods evaluated resulted in all-ceramic crowns with similar fracture behavior and reliability.


2020 ◽  
Vol 10 (8) ◽  
pp. 2696
Author(s):  
Satheesh B. Haralur ◽  
Alaa Ali Alamri ◽  
Shatha Abdulrahman Alshehri ◽  
Danyah Saeed Alzahrani ◽  
Mohammed Alfarsi

Endocrowns are primarily recommended in a molar region with a standardized preparation design. The aim of the study was to evaluate the effect of different occlusal preparation depths, pulp chamber-radicular extension, and all-ceramic materials on the fracture resistance of premolar endocrowns. Ninety human premolar teeth were root canal treated, randomly divided into three main groups according to all-ceramic material used for fabrication as Lithium Disilicate (LD) ceramic, Polymer infiltrated ceramic (PIC) and High translucency zirconia (HTZ). They were further subdivided into three subgroups (n = 10) according to preparation design of 2 mm occlusal reduction, 4.5 mm occlusal reduction and 4.5 mm occlusal reduction with 2 mm radicular extension. The endocrowns from respective restorative materials were fabricated, surface conditioned, and cemented with self-adhesive resin cement. All samples were thermocycled for 5000 cycles and subjected to compressive static load at 45° angluation with the cross-head speed of 0.5 mm/minute until the fracture. The mean fracture resistance of LD ceramic at 2 mm, 4.5 mm thickness and radicular extension was 62.55 MPa, 45.80 MPa, 74.27 MPa respectively. The corresponding values for the PIC and HTZ ceramics were 26.30 MPa, 21.65 MPa, 25.66 Mpa and 23.47 MPa, 27.30 MPa, 37.29 MPa respectively. The LD ceramic and greater extension inside the pulp chamber had higher fracture resistance.


2012 ◽  
Vol 13 (2) ◽  
pp. 210-215
Author(s):  
Firas Al Quran ◽  
Reem Haj-Ali

ABSTRACT Purpose The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Materials and methods Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Results Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p < 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens. How to cite this article Quran AF, Haj-Ali R. Fracture Strength of Three All-Ceramic Systems: Top-Ceram Compared with IPSEmpress and In-Ceram. J Contemp Dent Pract 2012;13(2): 210-215.


2016 ◽  
Vol 17 (11) ◽  
pp. 920-925 ◽  
Author(s):  
Bandar MA Al-Makramani ◽  
Fuad A Al-Sanabani ◽  
Abdul AA Razak ◽  
Mohamed I Abu-Hassan ◽  
Ibrahim Z AL-Shami ◽  
...  

ABSTRACT Aim The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan). Materials and methods Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. Results The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups. Conclusion In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks. Clinical significance The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations. How to cite this article Razak AAA, Abu-Hassan MI, AL-Makramani BMA, AL-Sanabani FA, AL-Shami IZ, Almansour HM. Effect of Surface Treatments on the Bond Strength to Turkom-Cera All-Ceramic Material. J Contemp Dent Pract 2016;17(11):920-925.


Sign in / Sign up

Export Citation Format

Share Document