scholarly journals Predicting the Oil Well Production Based on Multi Expression Programming

2016 ◽  
Vol 9 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Xin Ma ◽  
Zhi-bin Liu

Predicting the oil well production is very important and also quite a complex mission for the petroleum engineering. Due to its complexity, the previous empirical methods could not perform well for different kind of wells, and intelligent methods are applied to solve this problem. In this paper the multi expression programming (MEP) method has been employed to build the prediction model for oil well production, combined with the phase space reconstruction technique. The MEP has shown a better performance than the back propagation networks, gene expression programming method and the Arps decline model in the experiments, and it has also been shown that the optimal state of the MEP could be easily obtained, which could overcome the over-fitting.

2021 ◽  
Author(s):  
Mihai Oltean ◽  
D. Dumitrescu

Abstract Multi Expression Programming (MEP) is a new evolutionary paradigm intended for solving computationally difficult problems. MEP individuals are linear entities that encode complex computer programs. MEP chromosomes are represented in the same way as C or Pascal compilers translate mathematical expressions into machine code. MEP is used for solving some difficult problems like symbolic regression and game strategy discovering. MEP is compared with Gene Expression Programming (GEP) and Cartesian Genetic Programming (CGP) by using several well-known test problems. For the considered problems MEP outperforms GEP and CGP. For these examples MEP is two magnitude orders better than CGP.


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Mehdi Mahdaviara ◽  
Alireza Rostami ◽  
Khalil Shahbazi

Abstract This piece of study attempts to accurately anticipate the apparent viscosity of the viscoelastic surfactant (VES) based self-diverting acids as a function of VES concentration, temperature, shear rate, and pH value. The focus not only is on generating computer-aided models but also on developing a straightforward and reliable explicit mathematical expression. Towards this end, Gene Expression Programming (GEP) is used to connect the aforementioned features to and the target. The GEP network is trained using a wide dataset adopted from open literature and leads to an empirical correlation for fulfilling the aim of this study. The performance of the proposed model is shown to be fair enough. The accuracy analysis indicates satisfactory Root Mean Square Error and R-squared values of 7.07 and 0.95, respectively. Additionally, the proposed GEP model is compared with literature published correlations and established itself as the superior approach for predicting the viscosity of VES-based acids. Accordingly, the GEP model can be potentially served as an efficient alternative to experimental measurements. Its obvious advantages are saving time, lowering the expenses, avoiding sophisticated experimental procedures, and accelerating the diverter design in stimulation operations. Article Highlights The Gene Expression Programming evolutionary algorithm is proposed for modeling the viscosity of Viscoelastic Surfactant-based self-diverting acids. The viscoelastic surfactant viscosity correlation presents high accuracy which is demonstrated through multiple analyses. The Gene Expression Programming algorithm is a reliable tool expediting the diverter design phase of each stimulation operation.


2021 ◽  
Author(s):  
Mihai Oltean ◽  
D. Dumitrescu

Abstract Multi Expression Programming (MEP) is a new evolutionary paradigm intended for solving computationally difficult problems. MEP individuals are linear entities that encode complex computer programs. MEP chromosomes are represented in the same way as C or Pascal compilers translate mathematical expressions into machine code. MEP is used for solving some difficult problems like symbolic regression and game strategy discovering. MEP is compared with Gene Expression Programming (GEP) and Cartesian Genetic Programming (CGP) by using several well-known test problems. For the considered problems MEP outperforms GEP and CGP. For these examples MEP is two magnitude orders better than CGP.


2009 ◽  
Vol 18 (02) ◽  
pp. 197-238 ◽  
Author(s):  
MIHAI OLTEAN ◽  
CRINA GROŞAN ◽  
LAURA DIOŞAN ◽  
CRISTINA MIHĂILĂ

Genetic Programming (GP) is an automated method for creating computer programs starting from a high-level description of the problem to be solved. Many variants of GP have been proposed in the recent years. In this paper we are reviewing the main GP variants with linear representation. Namely, Linear Genetic Programming, Gene Expression Programming, Multi Expression Programming, Grammatical Evolution, Cartesian Genetic Programming and Stack-Based Genetic Programming. A complete description is provided for each method. The set of applications where the methods have been applied and several Internet sites with more information about them are also given.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Sign in / Sign up

Export Citation Format

Share Document