scholarly journals Development of Contactless Sand Production Test Instrument

2017 ◽  
Vol 10 (1) ◽  
pp. 1-11
Author(s):  
Huiqin Jia ◽  
Ruirong Dang

Background:Sand production is an important factor affecting reservoir exploitation. Excessive sand production affects the oil well life, causes the damage to the oil recovery device and brings serious hidden danger in the process of safety production.Objective:This paper presents a sand content computation model for the crude oil, which uses the power of sand production and Parseval theorem, develops a system to monitor the sand content.Method:The main problem of designing the mechanical structure and matching layer for sand sensor is introduced. Furthermore a contactless Doppler ultrasonic method is used to develop sand amount detection system‚ finally the system measurement accuracy is calibrated by the developed calibration system.Conclusion:The sand production computation model can describe the relationship between sand monitor output and sand amount; compute the oil sand carrying ratio. The sand sensor is installed on the outside of pipe, not directly contacted with the sand particles. Measurement accuracy of the sand production is higher than the same type instrument.

2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjie Zou ◽  
Zichuan Fang ◽  
Zhijun Zhang ◽  
Zhenzhen Lu

The adsorption of polymers affects the cost and oil recovery in oil reservoir exploitation and the flocculation effect in the treatment of oil sand tailings. The adhesion and adsorption of a hydrophobically modified polyacrylamide (HMPAM), i.e., P(AM-NaAA-C16DMAAC), on silica and asphaltene were investigated using surface force measurements, thermodynamic analysis and quartz crystal microbalance with dissipation (QCM-D) measurement. Our study indicates that HMPAM polymer has strong interaction with both silica and asphaltene. The adhesion force of HMPAM on silica was stronger than that on asphaltene surface. Consistently, the adsorption of HMPAM was also greater on silica surface, with a more rigid layer formed on the surface. For HMPAM/silica system, the attractive interaction and the strong adhesion are mainly driven by the hydrogen bonding and electrostatic interaction. For HMPAM/asphaltene system, it is mainly due to hydrophobic interaction between the long hydrocarbon chains of HMPAM and asphaltene. Furthermore, continuous adsorption of HMPAM was detected and multiple layers formed on both silica and asphaltene surfaces, which can be attributed to the hydrophobic chains of HMPAM polymers. This work has illustrated the interaction mechanism of HMPAM polymer on hydrophilic silica and hydrophobic asphaltene surfaces, which provide insight into the industrial applications of hydrophobically modified polymer.


2016 ◽  
Vol 24 (4) ◽  
pp. 460-470 ◽  
Author(s):  
Xiaomeng Wang

Water-soluble polymers have been used in many applications in the oil sand and heavy oil industries, including drilling, enhanced oil recovery, tailings treatment, and water treatment. Because they are water soluble, residual polymer can remain with the aqueous phase, potentially leading to environmental impacts. Investigating the environmental fate of these water-soluble polymers is particularly important as they may be toxic to aquatic biota or terrestrial animal life. However, since polymers are somewhat complex because of their high molecular weight, there are many challenges in their measurement, especially in complex matrices. In this paper, polymers used in oilfield applications, particularly in the oil sand or heavy oil industries, are reviewed and various analytical methods for polymer characterization are compared.


2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


2021 ◽  
pp. 1-22 ◽  
Author(s):  
Ali Madadizadeh ◽  
Alireza Sadeghein ◽  
Siavash Riahi

Abstract Today, enhance oil recovery (EOR) methods are attracting more attention to increase the petroleum production rate. Some EOR methods such as low salinity water flooding (LSW) can increase the amount of fine migration and sand production in sandstone reservoirs which causes a reduction in permeability and inflict damages on to the reservoir and the production equipment. One of the methods to control fine migration is using nanotechnology. Nanoparticles (NPs) can reduce fine migration by various mechanisms such as reducing the zeta potential of fine particles' surfaces. In this paper, three NPs including SiO2, MgO, and Al2O3 's effects on controlling fine migration and sand production were investigated in two scenarios of pre-flush and co-injection by using sandpack as a porous media sample. When NPs are injected into the porous media sample, the outflow turbidity and zeta potential of particles decreases. Experiments showed that SiO2 has the best effect on controlling fine migration in comparison with other NPs and it could reduce fine migration 69% in pre-flush and 75% in co-injection. Also, MgO and Al2O3 decreased fine migration 65% and 33% in the pre-flush scenario and 49%,13% in the co-injection scenario, respectively.


The Analyst ◽  
2019 ◽  
Vol 144 (17) ◽  
pp. 5223-5231 ◽  
Author(s):  
Sungha Park

An IID system was developed to improve the measurement accuracy of biosensors used in clinical applications by removing the optical characteristics of interference caused by icterus and hemolysis in blood samples.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879897 ◽  
Author(s):  
Yong Chen ◽  
Hao Yi ◽  
Chuan He

Steam-assisted gravity drainage has been proven to be an effective oil recovery method, and the technology of magnetic location is the key to steam-assisted gravity drainage. In view of the rapid development of this technology in China, a new magnetic location system with intellectual property rights was developed in this article, including mechanical parts and circuit section of detection system. Specific structure, operating principle, and technical parameters of magnetic source generator and detection system were designed and analyzed. The ground test results show that the source generator is powered by an alternating current of 4–7 A, the detection system can probe the magnetic field signal 25 m away from the magnetic source generator, and the measurement error is less than 3% by comparison of measured with actual spacing distance. The steam-assisted gravity drainage dual-horizontal well group in Zhong 37 Well block in Fengcheng Oilfield is chosen for further experiment with the developed magnetic location technology. The results of field experiment show the trajectories of Wells I (injection well) and P (production well) are basically matched in the horizontal projection, and the measurement error is within the allowable range. The magnetic location system developed in this article can meet the operational requirement in steam-assisted gravity drainage dual-horizontal wells.


2012 ◽  
Vol 524-527 ◽  
pp. 1872-1875
Author(s):  
Xue Qin Wang ◽  
Ling Hui Meng ◽  
Hong Wei Zhu ◽  
Li Liu ◽  
Yu Dong Huang

The scale formation in the oilfield has been a serious problem during the oil recovery process, which influences the oil recovery efficiency tremendously. The composition and surface morphology of the scale obtained from the oil well of Daqing Oilfield of China was analyzed by XRF, XRD and SEM. The results show that, the main compositions of the scale are crystal CaCO3 and amorphous SiO2. Different organic and inorganic acid was used in the scale removal experiments. It’s the inorganic acid that takes the most important part in the scale removal process.


2012 ◽  
Vol 9 (3) ◽  
pp. 343-353 ◽  
Author(s):  
Vahidoddin Fattahpour ◽  
Mahdi Moosavi ◽  
Mahdi Mehranpour

Sign in / Sign up

Export Citation Format

Share Document