scholarly journals Key Mechanisms of the Seismic Behaviour of External RC Wide Beam–column Joints

2019 ◽  
Vol 13 (1) ◽  
pp. 36-51 ◽  
Author(s):  
Giuseppe Santarsiero ◽  
Angelo Masi

Background: Reinforced concrete beam-column connections provided with wide beams are widely used in the European residential building stock. Several seismic codes indicate some limitation to be applied to this kind of reinforced concrete buildings due to their reduced performances with respect to those provided with conventional beams. Objective: The paper is focused on improving the knowledge of wide beam-column joints, highlighting the key degradation mechanisms affecting them, mainly related to slip phenomena of beam rebars, especially the rebars placed outside the column width. Methods: The behavior of wide beam-column joints has been evaluated by means of both experimental tests under cyclic loading and accurate nonlinear finite element analyses. The FE models predicted satisfactorily experimental results, thus enabling to carry out additional numerical analyses aimed at checking the effect of the longitudinal reinforcement amount in the beam member. Results: Experimental results show that wide beam-column joints conforming to the Italian seismic code do not exhibit a sufficiently ductile behavior due to damage in the non-confined concrete region, where beam rebars external to the joint core are anchored. Numerical simulations allowed to monitor bond slip of beam rebars as a function of the applied global displacement, showing differences between bars placed inside and outside the column width. Conclusion: Numerical simulations showed that different behavior is expected in case additional beam rebars are placed either inside or outside column width. In the first case, higher peak load and ductility values can be achieved, provided that the amount of beam reinforcement is not high enough to shift damage towards the column or cause high shear stress to the joint core and its consequent fragile failure.

1998 ◽  
Vol 7 (6) ◽  
pp. 096369359800700 ◽  
Author(s):  
E. Gutiérrez ◽  
G. Di Salvo ◽  
J.M. Mieres ◽  
L. Mogensen ◽  
E. Shahidi ◽  
...  

In this paper we outline the development of an all-in-one composite reinforcing formwork system for manufacturing reinforced concrete elements, in particular, we describe the main experimental tests carried out on an 8 metre beam using high strength concrete poured and bonded on a hybrid, glass/carbon fibre formwork.


Mechanik ◽  
2019 ◽  
Vol 92 (8-9) ◽  
pp. 568-570
Author(s):  
Michał Jasztal ◽  
Maciej Majcher

In this paper the object of research was the rotor rim of axial fan manufactured by MULTWING with the designation 5ZL. Experimental tests of the fan with the above mentioned rotor rim were carried out with factory tip clearance of 5 mm. Next, the geometry of the rotor rim was mapped and numerical simulations were carried out, as a result of which, displacements of the tip of the rotor blade were determined. Based on the results of mechanical simulations and the Traupel formula the possibility was found to reduce the tip clearance to 1 mm. In the next step, numerical flow simulations were performed for both tip clearance values. Obtained results, in the form of basic characteristics of axial fan, were compared with experimental results.


Author(s):  
Tanius Rodrigues Mansur ◽  
Joa˜o Ma´rio Andrade Pinto ◽  
Wellington Antonio Soares ◽  
Ernani Sales Palma ◽  
Enrico A. Colosimo

Fatigue limit’s of steel specimens were determined using experimental test’s and numerical simulations. The simulation was based on life distribution parameters taking into account a log-normal model. The obtained experimental results are quite close to those obtained by simulation.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Giuseppe Santarsiero ◽  
Angelo Masi

This study is devoted to experimentally investigate the seismic behaviour of reinforced concrete (RC) wide beam–column joints equipped with a steel jacketing seismic strengthening solution. To this end, three identical full-scale specimens have been tested under cyclic loading, one in the as-built condition and two after the application of the strengthening solutions. Details of selected solutions are described in the paper along with the experimental results which confirm how the application of simple and feasible steel interventions can effectively improve the seismic capacity of wide beam–column connections in RC frames, especially in terms of lateral load carrying capacity and energy dissipation.


Author(s):  
Rosângela Silva Pinto ◽  
Vanessa Carolaine Sousa ◽  
Luamim Sales Tapajós ◽  
Maurício de Pina Ferreira ◽  
Aarão Ferreira Lima Neto

abstract: This paper presents the results of seven experimental tests in reinforced concrete wide beams, aiming to investigate their performance when subjected to shear, using prefabricated truss stirrups as shear reinforcement, as well as a supplementary reinforcement to control cracks by delamination. The main analysed variables were: position of the supplementary reinforcement, inclination of the shear reinforcement, and spacing between stirrups. Results showed that strength increments of up to 142% were obtained using the prefabricated truss stirrups. Furthermore, the experimental results were compared with the theoretical shear strength estimates of the tested beams, following the recommendations of NBR 6118 (2014), Eurocode 2 (2004), and ACI 318 (2014), in order to evaluate the safety level of these codes when designing concrete elements subjected to shear with the reinforcement used in this paper.


Author(s):  
Lusine Gurgen Karapetyan ◽  
Tigran Vardan Ter-Poghosyan

The article touches upon the comparative analysis of bearing system calculations of a multi-storey residential building with site cast reinforced concrete frame and shear wall constructed by two different methods.  In the calculation models, the shear walls are constructed from site cast reinforced concrete in the first case, and from three-layer sound and thermal insulating bearing panels in the second. The calculations have been made considering the impact of the seismic force. According to the calculation results, the dynamic parameters of the bearing systems of the buildings and the economic efficiency indicators have been compared. Considering the fact that in the recent years three-layer sound and thermal insulating panels have been widely used in the world, the study attempted to reveal the efficiency of using such panels in the Republic of Armenia.


2018 ◽  
Vol 64 (4) ◽  
pp. 31-48 ◽  
Author(s):  
B. Turoń ◽  
D. Ziaja ◽  
L. Buda-Ożóg ◽  
B. Miller

AbstractThe paper presents the experimental research and numerical simulations of reinforced concrete beams under torsional load. In the experimental tests Digital Image Correlation System (DIC System) Q-450 were used. DIC is a non-contact full-field image analysis method, based on grey value digital images that can determine displacements and strains of an object under load. Numerical simulations of the investigated beams were performed by using the ATENA 3D – Studio program. Creation of numerical models of reinforced concrete elements under torsion was complicated due to difficulties in modelling of real boundary conditions of these elements. The experimental research using DIC can be extremely useful in creating correct numerical models of investigated elements. High accuracy and a wide spectrum of results obtained from experimental tests allow for the modification of the boundary conditions assumed in the numerical model, so that these conditions correspond to the real fixing of the element during the tests.


2018 ◽  
Vol 8 (1) ◽  
pp. 61-66
Author(s):  
Dan Alexandru Libotean ◽  
Alexandru Chira ◽  
Ferdinánd-Zsongor Gobesz

Abstract The textile reinforced concrete is a material with increased mechanical properties that can allow the production of lighter structural elements. The alkali-resistant textile reinforcement is not affected by corrosion. A structural facade panel and a light pole were modeled in order to study their behavior in the case of wind pressure. The developed numerical simulations were calibrated according to available data from the literature. These simulations revealed information potentially useful in the planning of further experimental tests.


2006 ◽  
Vol 519-521 ◽  
pp. 889-894 ◽  
Author(s):  
Nuno Peixinho ◽  
António Pinho

This study presents results of denting resistance of 6111-T4 aluminium alloy. Experimental results of dynamic denting were compared with numerical simulations performed using LS-DYNA software. The experimental tests were performed on 1mm thick plates clamped in a circular area with a diameter of 80mm. Dynamic denting was accomplished by dropping different indenters from heights ranging from 0.36 to 1.7 m. The obtained results indicate a high suitability of the aluminium alloy for use in automotive panels. The results of the numerical simulations display a good correlation with experiments if dynamic effects are introduced in the constitutive equation of the material through the Cowper-Symonds coefficients.


Sign in / Sign up

Export Citation Format

Share Document