scholarly journals Influence of the supplementary reinforcement on the shear strength of beams with prefabricated truss stirrups

Author(s):  
Rosângela Silva Pinto ◽  
Vanessa Carolaine Sousa ◽  
Luamim Sales Tapajós ◽  
Maurício de Pina Ferreira ◽  
Aarão Ferreira Lima Neto

abstract: This paper presents the results of seven experimental tests in reinforced concrete wide beams, aiming to investigate their performance when subjected to shear, using prefabricated truss stirrups as shear reinforcement, as well as a supplementary reinforcement to control cracks by delamination. The main analysed variables were: position of the supplementary reinforcement, inclination of the shear reinforcement, and spacing between stirrups. Results showed that strength increments of up to 142% were obtained using the prefabricated truss stirrups. Furthermore, the experimental results were compared with the theoretical shear strength estimates of the tested beams, following the recommendations of NBR 6118 (2014), Eurocode 2 (2004), and ACI 318 (2014), in order to evaluate the safety level of these codes when designing concrete elements subjected to shear with the reinforcement used in this paper.

1998 ◽  
Vol 7 (6) ◽  
pp. 096369359800700 ◽  
Author(s):  
E. Gutiérrez ◽  
G. Di Salvo ◽  
J.M. Mieres ◽  
L. Mogensen ◽  
E. Shahidi ◽  
...  

In this paper we outline the development of an all-in-one composite reinforcing formwork system for manufacturing reinforced concrete elements, in particular, we describe the main experimental tests carried out on an 8 metre beam using high strength concrete poured and bonded on a hybrid, glass/carbon fibre formwork.


2019 ◽  
Vol 270 ◽  
pp. 01007
Author(s):  
Walid Ahmad Safi ◽  
Yo Hibino

Formulas used to predict shear strength of reinforced concrete in different standards do not always correspond to each other due to the complexity of the shear transfer mechanism. Currently there is no generally accepted method of shear strength pridiction, however, traditionally, shear strength anticipation of a structural concrete elements is performed differently on members with or without shear reinforcement. These empirical approches tend to predict the shear strength too conservatively; alternatively, shear strength of concrete can be easily predicted by Mohr-Coulomb theory. In case of high-axial load and low shear reinforcement, the strength is likely to be determined by the concrete's shear crack. Therefore, a method to predict the strength of concrete with Mohr-circle has been proposed but the circles crossed the boundary and could not evaluate the strength correctly. Mohr circle can be used for prediction of diagonal tension failure strength but the circle cannot be evaluated. In this paper, Mohr circles were investigated considering all steps of cyclic loading until shear crack occurred. It also investigates a correlation between shear strength and normal strength through recognition of the Mohr-Coulomb failure criteria for each specimen.


2015 ◽  
Vol 16 (1) ◽  
pp. 167-179
Author(s):  
Marcin Niedośpiał ◽  
Michał Knauff ◽  
Wioleta Barcewicz

Abstract In this paper results of the experimental tests of four full-scale composite steel-concrete elements are reported. In the steel-concrete composite elements, a steel beam was connected with a slab cast on profiled sheeting, by shear studs. The end-plates were (the thickness of 8 mm, 10 mm and 12 mm) thinner than in ordinary design. Joints between the column and the beams have been designed as semi-rigid, i.e. the deformations of endplates affect the distribution of forces in the adjacent parts of the slab. The paper presents the theory of cracking in reinforced concrete and steel-concrete composite members (according to the codes), view of crack pattern on the surface of the slabs and a comparison of the tests results and the code calculations. It was observed, that some factors influencing on crack widths are not taken in Eurocode 4 (which is based on Eurocode 2 with taking into account the phenomenon called „tension stiffening”).


2015 ◽  
Vol 1106 ◽  
pp. 213-216
Author(s):  
Ján Hanzel ◽  
Lucia Majtánová ◽  
Jaroslav Halvonik

RC flat slabs are frequently used structural members in building construction. Safety verification and avoidance of failure due to punching in the vicinity of a column is currently performed using empirical model which is introduced in Eurocode 2. However extensive discussions are held about replacement of the EC2 model by more refined mechanical model which is presented in Model Code 2010. The paper deals with statistical evaluation of the safety level above mentioned models for punching resistance without shear reinforcement. Evaluation is supplemented by third model from already cancelled Czechoslovak national standard ČSN 731201. Database which includes results of more than 400 experimental tests of flat slab specimens has been used for the statistical evaluation.


2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


2012 ◽  
Vol 5 (5) ◽  
pp. 659-691 ◽  
Author(s):  
P. V. P. Sacramento ◽  
M. P. Ferreira ◽  
D. R. C. Oliveira ◽  
G. S. S. A. Melo

Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008) and incorporated the new fib Model Code (2010).


2013 ◽  
Vol 4 (4) ◽  
pp. 133-144 ◽  
Author(s):  
Šarūnas Kelpša ◽  
Mindaugas Augonis

When the various reinforced concrete structures are designed according to EC2 and STR, the difference of calculation results, is quite significant. In this article the calculations of shear strength of bending reinforced concrete elements are investigated according to these standards. The comparison of such calculations is also significant in the sense that the shear strength calculations are carried out according to different principles. The STR regulations are based on work of the shear reinforcement crossing the oblique section and the compressed concrete at the end of the section. In this case, at the supporting zone, the external bending moment and shear force should be in equilibrium with the internal forces in reinforcement and compressed concrete, i.e., the cross section must be checked not only from the external shear force, but also from bending moment. In EC2 standard, the shear strengths are calculated according to simplified truss model, which consists of the tension shear reinforcement bars and compressed concrete struts. The bending moment is not estimated. After calculation analysis of these two methods the relationships between shear strength and various element parameters are presented. The elements reinforced with stirrups and bends are investigated additionally because in EC2 this case is not presented. According to EC2 the simplified truss model solution depends on the compression strut angle value θ, which is limited in certain interval. Since the component of tension reinforcement bar directly depends on the angle θ and the component of compression strut depends on it conversely, then exists some value θ when the both components are equal. So the angle θ can be found when such two components will be equated. However, such calculation of angle θ became complicated if the load is uniform, because then the components of tension bar are estimated not in support cross section but in cross section that are displaced by distance d. So, the cube equation should be solved. For simplification of such solution the graphical method to find out the angle θ and the shear strength are presented. In these graphics the intersection point of two components (shear reinforcement and concrete) curves describes the shear strength of element. Santrauka Straipsnyje apžvelgtos ir palygintos STR ir EC2 įstrižojo pjūvio stiprumo skaičiavimo metodikos stačiakampio skerspjūvio elementams. Normatyve neapibrėžtas EC2 metodikos santvaros modelio spyrių posvyrio kampo skaičiavimas, lemiantis galutinį įstrižojo pjūvio stiprumą. Straipsnyje pateikiamos kampo θ apskaičiavimo lygtys, atsižvelgiant į apkrovimo pobūdį. Norint supaprastinti pateiktų lygčių sprendimą siūlomas grafoanalitinis sprendimo būdas, pritaikant papildomus koeficientus. EC2 neapibrėžia skaičiavimo išraiškų, kai skersinis armavimas yra apkabos ir atlankos. Minėtos išraiškos suformuluotos ir pateiktos straipsnyje. Nustačius EC2 metodikos dėsningumus siūlomas alternatyvus apytikslis skaičiavimo būdas atlankomis ir apkabomis armuotiems elementams. Straipsnyje apžvelgtos abi – STR ir EC2 – metodikos, išskiriant pagrindinius skirtumus ir dėsningumus.


Sign in / Sign up

Export Citation Format

Share Document