scholarly journals Study of Optical Constants of ZnO Dispersed PC/PMMA Blend Nanocomposites

2016 ◽  
Vol 3 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Shalini Agarwal ◽  
Y. K. Saraswat ◽  
Vibhav K. Saraswat

Present research work deals with the optical study of Zinc Oxide (ZnO) dispersed Polycarbonate/Polymethylmethacrylate (PC/PMMA) blend nanocomposites. ZnO nanoparticles have been prepared by simple chemical route and their average size has been confirmed by Transmission Electron Microscopy (TEM). The average particle size of the nanoparticles has been found to be ~11 nm. Formation of PC/PMMA blend nanocomposites has been confirmed by means of X-ray Diffraction (XRD). Absorption spectra, recorded using UV-Visible spectrophotometer, have been used to determine optical constants such as band gap, extinction coefficient, refractive index and real & imaginary part of dielectric constant. It has been found that band gap decreases as ZnO wt% increases in the blend nanocomposites. Lowest band gap has been found for PC25%/PMMA75% with ZnO 3 wt% blend nanocomposite. Increase in refractive index has also been found with increasing ZnO content. These types of blend nanocomposites have applications in UV-shielding and wave guide technologies.


2014 ◽  
Vol 881-883 ◽  
pp. 846-849
Author(s):  
Zai Man Liu ◽  
Yun Liu ◽  
Peng Zhang

The magnetic polymer microspheres were synthesized by copolymerization of styrene with a water-soluble polyurethane macromonomer in the presence of Fe3O4in ethanol/water medium. The structure of copolymer was determined by FTIR spectroscopy. The morphology and the average size of magnetic microspheres were characterized by transmission electron microscopy. The magnetic properties were recorded with a vibrating sample magnetometer. The results show that the magnetic microspheres had an average particle size of 500nm. The magnetic microspheres have super paramagnetic, enhanced hydrophilicity and the characteristics of simple and rapid magnetic separation. The magnetic susceptibility was 3.898×10-5emu/(Oe·g) and the saturation magnetization was 41.122 emu/g.



2016 ◽  
Vol 52 (1) ◽  
pp. 93-98 ◽  
Author(s):  
B. Azad ◽  
E. Borhani

An Al-2wt%Cu alloy was subjected to accumulative roll bonding (ARB) process up to a strain of 4.8. The two kinds of different microstructures, i.e, solution treated (ST) one and 190?C pre-aged for 30 min (Aged), were prepared as the starting structures for the ARB process. The microstructures were studied by transmission electron microscope (TEM) and electron backscattering diffraction (EBSD). The results showed that the fine precipitates having the average particle size of 16 nm were formed after aging process. On the other hand, the mean grain size of the ST-ARB and the Aged-ARB specimens reached to 650 nm and 420 nm, respectively. Study of the fracture surfaces were carried out by scanning electron microscope (SEM). The results indicated that at 0-cycle ARB, the specimens show dimples indicating the micro-void coalescence (MVC) mechanism of ductile fracture. The average size of dimples was larger in the ST-ARB specimen compared to the Aged-ARB specimen. The fracture mode was transgranular cleavage fracture in the Aged-specimen. At 3- cycle and 6-cycle ARB, also the specimens showed cleavage facets and river lines, that the river lines or the stress lines are steps between cleavage or parallel planes, which are always converged in the direction of local crack propagation.



2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.



2021 ◽  
Vol 11 (4) ◽  
pp. 1630
Author(s):  
Yakubu Newman Monday ◽  
Jaafar Abdullah ◽  
Nor Azah Yusof ◽  
Suraya Abdul Rashid ◽  
Rafidah Hanim Shueb

Carbon dots (CDs), a nanomaterial synthesized from organic precursors rich in carbon content with excellent fluorescent property, are in high demand for many purposes, including sensing and biosensing applications. This research focused on preparing CDs from natural and abundant waste, palm kernel shells (PKS) obtained from palm oil biomass, aiming for sensing and biosensing applications. Ethylenediamine and L-phenylalanine doped CDs were produced via the hydrothermal and solvothermal methods using one-pot synthesis techniques in an autoclave batch reactor. The as-prepared N-CDs shows excellent photoluminescence (PL) property and a quantum yield (QY) of 13.7% for ethylenediamine (EDA) doped N-CDs (CDs-EDA) and 8.6% for L-phenylalanine (L-Ph) doped N-CDs (CDs-LPh) with an excitation/emission wavelength of 360 nm/450 nm. The transmission electron microscopy (TEM) images show the N-CDs have an average particle size of 2 nm for both CDs. UV-Visible spectrophotometric results showed C=C and C=O transition. FTIR results show and confirm the presence of functional groups, such as -OH, -C=O, -NH2 on the N-CDs, and the X-ray diffraction pattern showed that the N-CDs were crystalline, depicted with sharp peaks. This research work demonstrated that palm kernel shell biomass often thrown away as waste can produce CDs with excellent physicochemical properties.



2015 ◽  
Vol 34 ◽  
pp. 73-78
Author(s):  
Irtiqa Syed ◽  
Santa Chawla

A novel one pot synthesis approach in oleic acid medium was employed to obtain monophasic ZnSe quantum dots (QD) of average size 3.7nm. The QDs were well crystalline in hexagonal phase as revealed by x-ray diffraction and high resolution transmission electron microscopy (HRTEM) studies. The ZnSe QDs exhibit sharp emission peak in the blue (465nm) with 385picosecond fluorescence decay time. The theoretical band gap corresponding to 3.7nm ZnSe QDs matched well with the measured 3.11eV band gap of synthesized QDs which thus showed quantum confinement effect.



2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.



2021 ◽  
Vol 6 (1) ◽  
pp. 32-36
Author(s):  
Anh Quoc Le ◽  
Van Phu Dang ◽  
Ngoc Duy Nguyen ◽  
Kim Lan Nguyen Thi ◽  
Kim Lang Vo Thi ◽  
...  

Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag+/Z) prepared by ion exchange reaction between silver nitrate (AgNO3) and zeolite 4A. The effects of the Ag+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were preapared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the platic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry.



2007 ◽  
Vol 7 (11) ◽  
pp. 4061-4064 ◽  
Author(s):  
Sang-Jin Lee ◽  
Young-Soo Yoon ◽  
Myung-Hyun Lee ◽  
Nam-Sik Oh

The present research describes synthesis of highly sinterable, nano-sized hydroxyapatite (HAp) powders using a wet chemical route with recycled eggshell and phosphoric acid as calcium and phosphorous sources. The raw eggshell was easily turned to CaO by the calcining process, and phosphoric acid was mixed with the calcined eggshell by the wet, ball-milling method. The crystalline development and microstructures of the synthesized powders and sintered samples were examined by X-ray diffractometry and scanning electron microscopy, respectively. The observed phases on the powder synthesis process were dependent on the mixing ratio (wt%) of the calcined eggshell to phosphoric acid and the heating temperature. The ball-milled, nano-sized HAp powder, which has an average particle size of 70 nm, was fully densified at 1300 °C for 1h. The Ca/P ratio for stoichiometric composition of HAp was controlled by adjustment of the mixing ratio.



2012 ◽  
Vol 535-537 ◽  
pp. 31-35
Author(s):  
Tao Liu ◽  
Rong Bin Du ◽  
Xue Jun Kong

Composite oxides materials CuSnO3as anode materials for lithium-ion batteries were synthesized by chemical coprecipitation method using SnCl4•5H2O, NH3•H2O and Cu(NO3)2•3H2O as raw materials.The precursor CuSn(OH)6and CuSnO3powders were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), and transmission electron microscope (TEM). The electrochemical properties of CuSnO3powders as anode materials of lithium ion batteries were investigated comparatively by galvanostatic charge-discharge experiments. The results show the average particle size of amorphous CuSnO3is 70nm. The initial capacity during the first lithium insertion is 1078 mA•h/g and the reversible charge capacity in first cycle is 775 mA•h/g. After 20 cycles, the charge capacity is 640 mA•h/g and this material shows moderate capacity fading with cycling. As a novel anode material for lithium ion batteries, amorphous CuSnO3demonstrates a large capacity and a low insertion potential with respect to Li metal.



2010 ◽  
Vol 8 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
Raúl Reza ◽  
Carlos Martínez Pérez ◽  
Claudia Rodríguez González ◽  
Humberto Romero ◽  
Perla García Casillas

AbstractIn this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.



Sign in / Sign up

Export Citation Format

Share Document