scholarly journals Recent Advances in Solid-State Analysis of Pharmaceuticals

2015 ◽  
Vol 2 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Syed Nasir Abbas Bukhari ◽  
Ng Shin Hwei ◽  
Ibrahim Jantan

Current analytical techniques for characterizing solid-state pharmaceuticals include powder x-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, infrared spectroscopy, Raman spectroscopy, electron microscopy and nuclear magnetic resonance. Powder x-ray diffraction and differential scanning calorimetry are mainstream techniques but they lack spatial resolution. Scanning electron microscopy and micro-Raman spectroscopy provide good chemical and optical characterization but they are not capable of analysing very small nanoparticles. Transmission electron microscopy and nano-thermal analysis can provide explicit characterization of nanoparticles but they are invasive. Nuclear magnetic resonance offers good spatial resolution but its use is mainly limited by poor sensitivity and high costs. In view of the many challenges posed by existing methods, new and novel techniques are being continually researched and developed to cater to the growing number of solid formulations in the pipeline and in the market. Some of the recent advances attained in the solid-state analysis of pharmaceutical are summarized in this review article.

1994 ◽  
Vol 346 ◽  
Author(s):  
Walter G. Klemperer ◽  
Todd A. Marquart

ABSTRACTCentimeter-sized crystals of pyridine dodecasil 3C (all silica zeolite ZSM-39) have been prepared using hydrothermal seeded growth techniques and characterized by differential scanning calorimetry, nuclear magnetic resonance, optical microscopy and powder X-ray diffraction.


2010 ◽  
Vol 8 (4) ◽  
pp. 744-749 ◽  
Author(s):  
Vesna Nikolić ◽  
Dušica Ilić ◽  
Ljubiša Nikolić ◽  
Mihajlo Stanković ◽  
Milorad Cakić ◽  
...  

AbstractThe inclusion complex β-cyclodextrin:nifedipin was prepared in solid state by coprecipitation with 1:1 mol ratio. The structure of the obtained complex and nifedipin was characterized by use of X-ray diffraction (XR), infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC) methods. The photodegradation of nifedipin and the β-cyclodextrin:nifedipin inclusion complex in solid state was monitored under natural daylight by infrared spectroscopy, whereby the free nifedipin degraded four to five times faster than the complexed nifedipin. The photodegradation products of both free and complexed nifedipin, formed during irradiation at 350 nm (with corresponding energy flux of 18 W m−2) were monitored by liquid chromatography during various time intervals. The speed of formation of nitroso- and nitro-phenyl derivatives by nifedipin irradiation was significantly higher than those of complexed nifedipin irradiation, which indicates its increased photostability in the inclusion complex. The effect on this property is significant because it contributes both to the improvement of the therapeutic effect of nifedipin and to the safer application thereof.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2011 ◽  
Vol 34 (5-6) ◽  
pp. 153-153
Author(s):  
Libasse Diop

Abstract Solid-state and solution 117Sn nuclear magnetic resonance studies of C2O4(SnPh3)2 have been carried out and found to be in good agreement with the tetrahedral environment of the tin (IV) atom as found from the solid state structure, previously determined by a single crystal X-ray diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document