Functionally Tailored Electro-Sensitive Poly(Acrylamide)-g-Pectin Copolymer Hydrogel for Transdermal Drug Delivery Application: Synthesis, Characterization, In-vitro and Ex-vivo Evaluation

2020 ◽  
Vol 10 (3) ◽  
pp. 185-196
Author(s):  
Sudha B. Patil ◽  
Syed Z. Inamdar ◽  
Kakarla R. Reddy ◽  
Anjanapura V. Raghu ◽  
Krishnamachari G. Akamanchi ◽  
...  

Background and Objectives: To develop electro-sensitive transdermal drug delivery systems (ETDDS) using polyacrylamide-grafted-pectin (PAAm-g-PCT) copolymer hydrogel for rivastigmine delivery. Methods: Free radical polymerization and alkaline hydrolysis technique was employed to synthesize PAAm-g-PCT copolymer hydrogel. The PAAm-g-PCT copolymeric hydrogel was used as a reservoir and cross-linked blend films of PCT and poly(vinyl alcohol) as rate-controlling membranes (RCMs) to prepare ETDDS. Results: The pH of the hydrogel reservoir was found to be in the range of 6.81 to 6.93 and drug content was 89.05 to 96.29%. The thickness of RCMs was in the range of 51 to 99 μ and RCMs showed permeability behavior against water vapors. There was a reduction in the water vapor transmission rate as the glutaraldehyde (GA) concentration was increased. The drug permeation rate from the ETDDS was enhanced under the influence of electric stimulus against the absence of an electric stimulus. The increase in flux by 1.5 fold was recorded with applied electric stimulus. The reduction in drug permeability observed when the concentration of GA was increased. Whereas, the permeability of the drug was augmented as an electric current was changed from 2 to 8 mA. The pulsatile drug release under “on– off” cycle of electric stimulus witnessed a faster drug release under ‘on’ condition and it was slow under ‘off’ condition. The alteration in skin composition after electrical stimulation was confirmed through histopathology studies. Conclusion: The PAAm-g-PCT copolymer hydrogel is a useful carrier for transdermal drug delivery activated by an electric signal to provide on-demand release of rivastigmine.

2019 ◽  
Vol 3 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Ravindra P. Birajdar ◽  
Sudha S. Patil ◽  
Vijaykumar V. Alange ◽  
Raghavendra V. Kulkarni

Objective: The study aimed to prepare electrically-triggered transdermal drug delivery systems (ETDS) using electrically responsive polyacrylamide-graft-gaur gum (PAAm-g-GaG) copolymer. Methods: The PAAm-g-GaG copolymer was synthesized by adopting free radical polymerization grafting method. This PAAm-g-GaG copolymer hydrogel acts as a drug reservoir and blend films of Guar Gum (GaG) and Polyvinyl Alcohol (PVA) were included as Rate Controlling Membranes (RCM) in the system. The PAAm-g-GaG copolymer was characterized by FTIR, neutralization equivalent values, thermogravimetric analysis and elemental analysis. Results: On the basis of results obtained, it is implicit that the drug permeation decreased with an increase in the concentration of glutaraldehyde and RCM thickness; while drug permeation rate was increased with increasing applied electric current strength from 2 to 8 mA. A two fold increase in flux values was observed with the application of DC electric current. An increase in drug permeation was witnessed under on condition of electric stimulus and permeation was decreased when electric stimulus was "off". The skin histopathology study confirmed the changes in skin structure when electrical stimulus was applied. Conclusion: The electrically-sensitive PAAm-g-GaG copolymer is a useful biomaterial for transdermal drug delivery application.


2009 ◽  
Vol 26 (6) ◽  
pp. 1344-1352 ◽  
Author(s):  
Suneela Prodduturi ◽  
Glen J. Smith ◽  
Anna M. Wokovich ◽  
William H. Doub ◽  
Benjamin J. Westenberger ◽  
...  

e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Fang Sun ◽  
Guoqiang. Zhu ◽  
Shunlai Li ◽  
Hongguang Du

AbstractThe present investigation was directed towards the synthesis of a copolymer of vinyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid and acrylamide to be exploited as a pressure sensitive adhesive (PSA) in transdermal drug delivery systems. The experimental methodology involved the optimization of reaction conditions for the polymer synthesis. The optimal synthesis conditions of PSA were determined as that polymerization reaction of PSA in ethyl acetate with BPO of 0.5% w/w of reactants at 75 oC throughout the whole process with polymerization reaction time of eight hours. The copolymer was then characterized by FTIR, 1H-NMR, 13C-NMR and DSC. The PSA was also evaluated for residual monomer content, viscosity, tack, peel adhesion and drug release behavior. The synthesized PSA’s tack is 21#; peel adhesion is 1.39 N/mm. And the residual monomers content in the copolymer after polymerizing for eight hours are VAc 2.98%, BA 0.004%. The PSA also exhibited excellent drug release behavior. Membranes containing oxybutynin were capable of releasing in zero order fashion. It was found that the release velocity depended on the concentration of modified monomer. Drug release from those membranes could be easily tailored by changing the content of the modified monomers. It was found suitable for use in transdermals and could be further exploited either as an adhesive or as a system component in the area of transdermal drug delivery.


Author(s):  
Muhammad Iqbal Nasiri ◽  
Lalitkumar K. Vora ◽  
Juhaina Abu Ershaid ◽  
Ke Peng ◽  
Ismaiel A. Tekko ◽  
...  

AbstractThe development of dissolving microneedles (DMN) is one of the advanced technologies in transdermal drug delivery systems, which precisely deliver the drugs through a rapid dissolution of polymers after insertion into the skin. In this study, we fabricated nanoemulsion-loaded dissolving microneedle (DMN) arrays for intradermal and transdermal drug delivery. For this task, model drug (amphotericin B, AmB)-loaded nanoemulsion (NE) were prepared by the probe-sonication method. AmB-loaded-NE was prepared using Capmul MCM C-8 EP/NF, Tween® 80, poly(vinyl alcohol) (PVA-10 kDa), and poly (vinyl pyrrolidone) (PVP-360 kDa or K29/32) by using SpeedMixer™, followed by probe-sonication and evaluated for particle size and polydispersity index (PDI). Transmission electron microscopy (TEM) was also used to assess the particle size before and after DMN casting. AmB-NE embedded DMN arrays were found to be strong enough, revealed efficient skin insertion, and penetrated down to the fourth layer (depth ≈ 508 μm) of Parafilm M® (validated skin model). Ex vivo skin deposition experiments in full-thickness neonatal porcine demonstrated that after 24 h, AmB-NE-DMN arrays were able to deposit 111.05 ± 48.4 µg/patch AmB into the skin. At the same time, transdermal porcine skin permeation studies showed significantly higher permeability of AmB (29.60 ± 8.23 μg/patch) from AmB-NE-DMN compared to MN-free AmB-NE patches (5.0 ± 6.15 μg/patch) over 24 h. Antifungal studies of optimized AmB-NE-DMN, AmB-loaded discs and drug-free DMN against Candida albicans, confirmed the synergistic activity of Campul-MCM C-8, used in the nanoemulsion formulation. This study establishes that nanoemulsion based dissolving microneedle may serve as an efficient system for intradermal as well as transdermal drug delivery. Graphical abstract


Author(s):  
HIMANI BAJAJ ◽  
VINOD SINGH ◽  
RANJIT SINGH ◽  
TIRATH KUMAR

Objective: To date, film-forming systems have been intensively investigated for transdermal drug delivery. Film-forming systems offers various advantages compared over conventional transdermal drug delivery systems. The objective of the present study was to study the effect of polymeric blend on ex-vivo permeation studies of topical film-forming gel of aceclofenac. Methods: Film-forming gels were prepared by using Hydroxypropyl methylcellulose and Eudragit polymeric blend in varied concentrations, polyethylene glycol 400 as plasticizer, ethanol as solvent and tween 80 as a penetration enhancer. The prepared film-forming gels were evaluated and the influence of the concentration and ratio of polymeric blends used plasticizer and ethanol were investigated. Results: All the prepared film-forming gels showed satisfactory properties regarding homogeneity, compatibility, viscosity and pH value. Variation in the concentration of polymers showed a variable effect on drug permeation rate from film-forming gels. Almost, all formulations permeated up to 80% of drug in 12 h and formulation F1 showed a maximum release about 97.54 % in 12 h. Conclusion: Film-forming gels of aceclofenac with sustained-release profile were successfully developed and may provide a promising effective formulation which may improve patient compliance.


Author(s):  
Thijs Defraeye ◽  
Flora Bahrami ◽  
Lu Ding ◽  
Riccardo Innocenti Malini ◽  
Alexandre Terrier ◽  
...  

Transdermal drug delivery is a key technology for administering drugs. However, most devices are “one-size-fits-all”, even though drug diffusion through the skin varies significantly from person-to-person. For next-generation devices, personalization for optimal drug release would benefit from an augmented insight into the drug release and percutaneous uptake kinetics. Our objective was to quantify the changes in transdermal fentanyl uptake with regards to the patient’s age and the anatomical location where the patch was placed. We also explored to which extent the drug flux from the patch could be altered by miniaturizing the contact surface area of the patch reservoir with the skin. To this end, we used validated mechanistic modeling of fentanyl diffusion, storage, and partitioning in the epidermis to quantify drug release from the patch and the uptake within the skin. A superior spatiotemporal resolution compared to experimental methods enabled in-silico identification of peak concentrations and fluxes, and the amount of stored drug and bioavailability. The patients’ drug uptake showed a 36% difference between different anatomical locations after 72 h, but there was a strong interpatient variability. With aging, the drug uptake from the transdermal patch became slower and less potent. A 70-year-old patient received 26% less drug over the 72-h application period, compared to an 18-year-old patient. Additionally, a novel concept of using micron-sized drug reservoirs was explored in silico. These reservoirs induced a much higher local flux (µg cm-2 h-1) than conventional patches. Up to a 200-fold increase in the drug flux was obtained from these small reservoirs. This effect was mainly caused by transverse diffusion in the stratum corneum, which is not relevant for much larger conventional patches. These micron-sized drug reservoirs open new ways to individualize reservoir design and thus transdermal therapy. Such computer-aided engineering tools also have great potential for in-silico design and precise control of drug delivery systems. Here, the validated mechanistic models can serve as a key building block for developing digital twins for transdermal drug delivery systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Bing Cai ◽  
Karin Söderkvist ◽  
Håkan Engqvist ◽  
Susanne Bredenberg

In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2) were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.


Sign in / Sign up

Export Citation Format

Share Document