Quality of Service in Wireless Sensor Networks: Imperatives and Challenges

Author(s):  
Jitendra Kumar ◽  
Vinay Rishiwal ◽  
Mohammad Izharul Ansari

: A Wireless Sensor Network (WSN) is an effective sensing technology that is used to replicate the human capability of sensing, collecting, computing, processing and transmitting the data that is collected from a very large area. In recent past, sensor technology has shown tremendous development in the field of environment & health monitoring, military surveillance, vehicle tracking, and detection. The participating sensor nodes are prone to failure because of limited resources. The topology of the networks is highly dynamic in nature because of frequent failure of the sensor nodes. The Quality of Service support to highly dynamic networks is one of the challenging tasks. The dynamic nature, unpredictable topology, the demand of miniature size of the devices, tiny size of sensors and limited resources attract the researchers towards the designing of QoS aware protocols. This paper has discussed the architecture, applications, life cycle and types of WSN. Further, various QoS protocols, their limitations, and challenges have also been discussed. Further, this paper presents the most important open issues and challenges in providing QoSs provisioning to the WSN as QoS routing, energy consumption, bandwidth utilization, security, and mobility. This comprehensive review surely helps the researchers to find the new existing challenges and also help them to design new research problems for their future work.

The fundamental issue is framing the sensor nodes and steering the information from sender node to receiver node in wireless sensor networks (WSN). To resolve this major difficulty, clustering algorithm is one of the accessible methods employed in wireless sensor networks. Still, clustering concept also faces some hurdles while transmitting the data from source to destination node. The sensor node is used to sense the data and the source node helps to convey the information and the intended recipient receives the sensed information. The clustering proposal will choose the cluster head depending on the residual energy and the sensor utility to its cluster members. The cluster heads will have equal cluster number of nodes. The complexity is generated in computing the shortest path and this can be optimized by Dijkstra’s algorithm. The optimization is executed by Dijkstra’s shortest path algorithm that eliminates the delay in packet delivery, energy consumption, lifetime of the packet and hop count while handling the difficulties. The shortest path calculation will improve the quality of service (QoS). QoS is the crucial problem due to loss of energy and resource computation as well as the privacy in wireless sensor networks. The security can be improvised in this projected work. The preventive metrics are discussed to upgrade the QoS facility by civilizing the privacy parameter called as Safe and Efficient Query Processing (SAFEQ) and integrating the extended watchdog algorithm in wireless sensor networks.


Author(s):  
Sanatan Mohanty ◽  
Sarat Kumar Patra

Wireless Sensor Network (WSN) consists of many tiny, autonomous sensor nodes capable of sensing, computation and communication. The main objective of IEEE 802.15.4 based WSN standard is to provide low cost, low power and short range communication. Providing QoS in WSN is a challenging task due to its severe resource constraints in terms of energy, network bandwidth, memory, and CPU. In this chapter, Quality of Service (QoS) performance evaluation has been carried out for IEEE 802.15.4 networks based WSN star and mesh topology using routing protocols like AODV, DSR and DYMO in QualNet 4.5 simulator. Performance evaluations metrics like Packet Delivery Ratio (PDR), throughput, average end to end delay, energy per goodput bit, network lifetime of battery model and total energy consumption which includes transmission, reception, idle and sleep mode were considered for both the topology. From the simulation studies and analysis, it can be seen that on an average DSR and DYMO performs better than AODV for different traffic load rates.


Author(s):  
S. Ananth ◽  
A. M. Kalpana ◽  
R. Vijayarajeswari

Wireless Sensor Network (WSN) is the interconnection between things or objects embedded with hardware and software. In WSN, small end devices (like sensors) and high end devices (like servers) are connected to the Internet. For WSN enabled in Software-Defined Network (SDN), the routers are controlled using a controller server node. It is a dynamic network due to the presence of mobile nodes and energy constrained nodes. The routing is the process of detecting route from source to target. In dynamic networks like WSN, routing is a challengeable task. This paper is to provide a routing solution for backboneless SDN-enabled WSN. The proposed work enhances routing Quality of Service (QoS) in WSN. The paths are dynamically reallocated to reduce the packet loss.


Author(s):  
Carlos Abreu ◽  
P. M. Mendes

Biomedical wireless sensor networks are a key technology to enable the development of new healthcare services and/or applications, reducing costs and improving the citizen's quality of life. However, since they deal with health data, such networks should implement mechanisms to enforce high levels of quality of service. In most cases, the sensor nodes that form such networks are small and battery powered, and these extra quality of service mechanisms mean significant lifetime reduction due to the extra energy consumption. The network lifetime is thus a relevant feature to ensure the necessary quality of service requirements. In order to maximise the network lifetime, and its ability to offer the required quality of service, new strategies are needed to increase the energy efficiency, and balance in the network. The focus of this work goes to the effective use of the available energy in each node, combined with information about the reliability of the wireless links, as a metric to form reliable and energy-aware routes throughout the network. This paper present and discusses two different deployment strategies using energy-aware routing and relay nodes, assessed for different logical topologies. The authors' conclusion is that the use of energy-aware routing combined with strategic placed relay nodes my increase the network lifetime as high as 45%.


2013 ◽  
Vol 4 (3) ◽  
pp. 776-787
Author(s):  
Nitin Nitin

This paper presents, Application of Gur Game Based Algorithm on Wireless Sensor Networks (WSNs) deployed to monitor Homogenous and Heterogeneous Grid in order to achieve Quality of Service (QoS) = 0.40 and 0.50. Further, the objectives of all these algorithms are to maximize the coverage of the sensor area while conserving energy consumed by sensor nodes. This is achieved via carefully activating/deactivating the sensors while maximizing the coverage area.


2020 ◽  
pp. 644-678
Author(s):  
Sanatan Mohanty ◽  
Sarat Kumar Patra

Wireless Sensor Network (WSN) consists of many tiny, autonomous sensor nodes capable of sensing, computation and communication. The main objective of IEEE 802.15.4 based WSN standard is to provide low cost, low power and short range communication. Providing QoS in WSN is a challenging task due to its severe resource constraints in terms of energy, network bandwidth, memory, and CPU. In this chapter, Quality of Service (QoS) performance evaluation has been carried out for IEEE 802.15.4 networks based WSN star and mesh topology using routing protocols like AODV, DSR and DYMO in QualNet 4.5 simulator. Performance evaluations metrics like Packet Delivery Ratio (PDR), throughput, average end to end delay, energy per goodput bit, network lifetime of battery model and total energy consumption which includes transmission, reception, idle and sleep mode were considered for both the topology. From the simulation studies and analysis, it can be seen that on an average DSR and DYMO performs better than AODV for different traffic load rates.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

:A wireless sensor network is a collection of a large number of sensors nodes densely deployed. Sensor nodes are used to sense environmental data and collect information at a central place. Sensors have been a regular part in our daily life, they can be very much used in isolation to solve many problems like in car, ac, and to measure temperature, sound, pollution levels, humidity, wind speed direction and pressure. They can be used in isolation. But the important focus is on some crucial applications where human life is associated, environmental is associated for example the battlefields, earth quick monitoring, flood monitoring, weather forecasting etc. These are some of the biggest applications which need the invention of sensor nodes rather than manual human forces. Here sensor nodes cannot work in isolation because one sensor cannot gather appropriate data. Therefore, it is needed to deploy a large number of sensor nodes, which can exchange data through some communication strategy or protocol, and thereafter the data should be maintained to a common place where some action should be taken. For providing efficient applications among these sensor nodes, an efficient routing protocol or algorithm needs which could provide the QoS to the end user. Most of the routing protocols for WSNs are designed without explicitly considering the Quality of Service (QoS) of the generated routes. It has been observed that such routing protocols are inadequate at the time of data delivery route which requires guaranteed QoS. QoS routing requires discovering a route from source to destination to fulfill the QoS necessities. QoS is more complicated to assurance in sensor network due to dynamic topology and energy constraints. In this paper, recent issues and challenges have been considered in terms of research gap yet, QoS routing approaches have been deliberated, distribution of literature over recent years and QoS parameters distribution over recent years have been exposed, which are valuable for researchers for further investigation.


2011 ◽  
Vol 4 (3) ◽  
pp. 188-202 ◽  
Author(s):  
Josip Balen ◽  
Drago Zagar ◽  
Cesar Viho ◽  
Goran Martinovic

Sign in / Sign up

Export Citation Format

Share Document