Solid State Kinetics, Spectroscopic, Thermal Degradation and Fungicidal Studies of Biodegradable Copper Surfactants Derived from Lauric Acid

2020 ◽  
Vol 18 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Shilpa Jain ◽  
Rashmi Sharma ◽  
Arun K. Sharma

Introduction: The synthesis of copper soap (laurate), and its complex with 2-amino 6- methylbenzothiazole and their elemental and spectral analysis have been done for comparative studies using IR, NMR, Mass and ESR spectra. Methods: The fungicidal activities, with reference to Alternaria alternata and Aspergillus niger at different concentrations by P.D.A. technique were also studied. Results and Conclusion: The present research work comprises detailed thermal analysis using TGA technique to determine their kinetic and thermodynamic parameters by applying various equations like Freeman Carroll, Coats-Redfern equation, Horowitz-Metzger equation, Broido equation, Piloyan–Novikova equation.

2021 ◽  
Author(s):  
Shahzad Mahmood ◽  
◽  
Memuna G. Shahid ◽  
Muhammad Nadeem ◽  
Rubina Nelofer ◽  
...  

The present research work was conducted to improve the phytase production by genetic alteration of Aspergillus niger with induced mutagenesis using solid state fermentation. Strain improvement was carried out in the presence of ultra violet (UV) irradiation and ethylmethane sulphonate (EMS) [0.5% v/v] treatments for various time intervals. We reported an improved strain of Aspergillus niger designated as UV-3 mutant producing a zone of hydrolysis of about 40 mm, in comparison to wild strain (26 mm). The highest enzyme activity was found to be 547.64 IU/g for UV-3 mutant followed by EMS-4 mutant (492.23 IU/g)compared to wild strain which showed 406.45 IU/g of enzyme activity. There was 1.35 fold increase in phytase production after mutation studies of Aspergillus niger. Phytase was applied as poultry feed additive and given to broiler chickens for 5 weeks. The results exhibited that there was increase in body weight gain (BWG) of chicks for experimental group (2028 g) in comparison to control group (1903 g). Thus, physical and chemical mutagenesis was proved as an effective technique for the improvement of strain and ultimately for enhanced and economical phytase production for different industrial applications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Asha Meena ◽  
Vandana Sukhadia ◽  
Rashmi Sharma

: The aim of this manuscript is to give an overview of new findings in the field of thermal degradation and antimicrobial studies for copper (II) sesame and copper (II) groundnut complexes with substituted benzothiazole ligand. Solid state kinetics and thermal degradation has attracted the attention of scientific community not only due to its numerous applications in environment, energy, waste water treatment, pollution control and green chemistry but also due to their wide range of biological activities. This work aims to explore the study of chemical steps of the investigated degradation and the evaluation of the kinetic and thermodynamic parameters of the newly synthesized biologically active complexes (CSBe and CGBe) derived from two different edible oils i.e. sesame and groundnut and ligand containing nitrogen, oxygen and sulphur atoms i.e. 2-amino-6- ethoxy benzothiazole. The studies include Coats-Redfern equation (CRE), Horowitz-Metzger equation (HME), Broido equation (BE) and PiloyanNovikova equation (PNE) for analysis of the degradation and energetic for each step using kinetic data. The observation suggests that CGBe takes longer time and higher temperature to decompose completely than CSBe. Antimicrobial activities against Staphylococus aureus of these compounds also have been analysed which may provide an important account of information about their industrial utilization. The TGA study reveals that CSBe and CGBe complexes undergoes stepwise thermal degradation of ligand-soap bond of complex and saturated and unsaturated fatty acid components of edible oils i.e. sesame and groundnut. The order of antimicrobial activities of the two complexes studied is – CSBe > CGBe These results reveals that nature of different nitrogen, oxygen and sulphur containing ligands coordinated with copper ion play a significant role in the inhibition activity.


2019 ◽  
pp. 1-3
Author(s):  
Madhuri B ◽  
Narasimha G ◽  
Balaji M*

Areca palm (ChrysalidoCarpus lutescenes) a widely used plant having feathery arching brands with 100 leaflets. All these plants produce much of waste in additions to greeny and nuts. This waste of spade is used for the production of various molecules that are used in industry and pharma sector. Fermentation techniques are used to generate economically important enzymes for industrial and pharmaceutical purposes. Cellulase enzyme degrades the cellulose in between β-1, 4 glucosidic link found in lignocellulosic complex which under physical treatment is slower to degrade. The present study of Aspergillus niger for cellulose production was carried in solid state (SS) and submerged (SM) fermentations for production of cellulase enzyme. Cellulase production in SSF after 72 h of fermentation was 8.02 and in SMF activity was 2.98 per ml of cultured broth at H 6 and temperature at 30°C. Both SMF and SSF were supplemented with lactose and lactobionic acid, which acted as cellulase P production inducers. The aim of the present work was to study the effect of Areca palm spade as substrate for Aspergillus niger and its cellulase production under SMF and SSF.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2013 ◽  
Vol 114 (2) ◽  
pp. 653-664 ◽  
Author(s):  
Ram Lakhan Prasad ◽  
Anita Kushwaha ◽  
Rajesh Kumar ◽  
Imre Miklós Szilágyi ◽  
László Kótai

2011 ◽  
Vol 165 (1) ◽  
pp. 382-395 ◽  
Author(s):  
Jaqueline Renovato ◽  
Gerardo Gutiérrez-Sánchez ◽  
Luis V. Rodríguez-Durán ◽  
Carl Bergman ◽  
Raúl Rodríguez ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Stefan Lis ◽  
Krzysztof Staninski ◽  
Tomasz Grzyb

The europium (III) complex of coumarin-3-carboxylic acid (C3CA) has been prepared and characterized on the basis of elemental analysis, IR, and emission (photoluminescence and electrochemiluminescence) spectroscopy. The synthesised complex having a formula Eu was photophysically characterized in solution and in the solid state. Electrochemiluminescence, ECL, of the system containing the Eu(III)/C3CA complex was studied using an oxide-covered aluminium electrode. The goal of these studies was to show the possibility of the use of electrochemical excitation of the Eu(III) ion in aqueous solution for emission generation. The generated ECL emission was very weak, and therefore its measurements and spectral analysis were carried out with the use of cut-off filters method. The studies proved a predominate role of the ligand-to-metal energy transfer (LMET) in the generated ECL.


Sign in / Sign up

Export Citation Format

Share Document