Design, Synthesis and Antitubercular Evaluation of New Benzimidazole Scaffolds

2021 ◽  
Vol 18 (4) ◽  
pp. 375-383
Author(s):  
Smriti Yadav ◽  
Bharath Kumar Inturi ◽  
Shrinidhi B.R ◽  
Pooja H.J ◽  
Neenu Ganesh ◽  
...  

Background: To overcome one of the resistance mechanisms of Isoniazid (INH), there is a need for an antitubercular agent that can inhibit InhA enzyme by circumventing the formation of INH-NAD+ adduct. Objective: The objective of the study is the development of novel antitubercular agents that target Mycobacterium tuberculosis InhA (Enoyl Acyl Carrier Protein Reductase). Methods: A small-molecule chemical library was used for the identification of the novel InhA inhibitors using primary screening and molecular docking studies followed by the scaffold hopping approach. The designed molecules, 2-(2-(hydroxymethyl)-1H- benzo[d] imidazole-1-yl)- N- substituted acetamides were synthesized by reacting (1H- benzo[d]imidazole -2-yl)methanol with appropriate 2-chloro-N-substituted acetamides / dialkylamino carbonyl chlorides respectively in good yields (42-65%). The antitubercular activity of synthesized compounds was determined by Microplate Alamar Blue Assay (MABA) against Mycobacterium tuberculosis H37Rv strain. The selected compounds were screened for cytotoxicity on normal cell lines. Results: The antitubercular activity data revealed that the 4-chlorophenyl substituted derivative (3b) showed good MIC value at 6.25 μg/mL and, dimethylacetamide substituted derivative (3i) showed MIC at 25 μg/mL among the tested compounds. The substitution of dimethylacetamide (3i) group on the 1st position of benzimidazole has good antitubercular activity (25μg/mL) in comparison to the diethyl acetamide group (3j, 100μg/mL). Conclusion: The antitubercular activity data indicated that the tested compounds exhibited well to moderate inhibition of the H37Rv strains. The compounds (3b) with electronegative substitution on the phenyl moiety exhibited better antitubercular activity than that of the other substitutions. The active compounds have displayed a good safety profile on normal cell lines.

2019 ◽  
Vol 19 (3) ◽  
pp. 310-321 ◽  
Author(s):  
Bontha Venkata Subrahmanya Lokesh ◽  
Y. Rajendra Prasad ◽  
Afzal Basha Shaik

Background: Many synthetic procedures were reported till date to prepare pyrazoline derivatives. Some have published pyrazolines from different chalcone derivatives in the literature. Objective: A series of new pyrazolines containing novel 2,5-dichloro-3-acetylthiophene chalcone moiety (PZT1-PZT20) have been synthesized, characterized by 1HNMR and 13CNMR and evaluated for them in vitro antitubercular activity against M. tuberculosis H37Rv strain and in vitro anticancer activity against DU-145 prostate cancer cell lines and all compounds were also screened for molecular docking studies against specific targeted protein domains. Methods: All compounds were screened for potential activity against Mycobacterium tuberculosis H37Rv (MTB) strain and anticancer activity against DU-149 prostate cancer cell lines using MTT cytotoxicity assay. Results: Among the series, compound PZT5 with 2”, 4”-dichlorophenyl group at 5-position on the pyrazoline ring exhibited the most potent antitubercular activity (MIC=1.60 µg/mL) and compounds PZT2, PZT9, PZT11, PZT15, and PZT20 showed similar antitubercular activity against standard pyrazinamide (MIC=3.12 µg/mL) by broth dilution assay. PZT15 and PZT17 with 4”- pyridinyl and 2”-pyrrolyl groups on pyrazoline ring were found to exhibit better anticancer activity against DU-149 prostate cancer cell lines with IC50 values of 2.0±0.2 µg/mL and 6.0±0.3 µg/mL respectively by MTT assay. The preliminary structure-activity relationship has been summarized. The molecular docking studies with crystalline structures of enoyl acyl carrier protein reductase InhA interaction with target protein (2NSD; PDB and 3FNG; PDB) of Mycobacterium tuberculosis H37Rv (MTB) strain have also exhibited good ligand interaction and binding affinity. Ligand interaction and binding affinity were estimated using crystal structures of both types of enoyl acyl carrier protein reductase InhA (3FNG.pdb) and found to be much higher (-16.70 to - 19.20 kcal/mol) compared with pyrazinamide (-10.70 kcal/mol) as a standard target molecule. Whereas the binding affinities of six active compounds with crystal structure of other type of enoyl acyl carrier protein reductase InhA (2NSD.pdb) were much similar and higher (-9.30 to - 11.20 kcal/mole) than pyrazinamide (-11.10 kcal/mole). Conclusion: These new pyrazolines would be promising potent inhibitors of drug sensitive and drug resistant Mycobacterium tuberculosis strain and potential anticancer agents against prostate cancer and other prototypes of cancers.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (06) ◽  
pp. 18-23
Author(s):  
U. V. Laddi ◽  
◽  
S. R. Desai

Some new 5-[(((α-phenyl/methyl)benzylidene)amino)oxy]methyl/ethyl-2-[4-(substituted aryl)/allyl)] amino-1,3,4-oxadiazoles (4a-p), 3-[(((α-phenyl/methyl)- benzylidene) amino)oxy]methyl/ethyl-4-(4- substitutedaryl)/allyl-5-mercapto-1,2,4-triazoles (5a-p) and 5-[(((α-phenyl/methyl)-benzylidene)amino) oxy]- methyl/ethyl-2-[4-(substituted aryl)/allyl)]amino-1,3,4-thiadiazoles (6a-p) were prepared starting from α/β-[((α-(phenyl/methyl)benzylidene)amino)oxy acetic/propionic acid hydrazides (1a-d). The structures of all the compounds have been established by elemental and spectral (IR, 1HNMR and mass) analysis. All the newly synthesised compounds have been screened for their antimicrobial activity against Escherichia coli, Bacillus cirroflagellosus, Aspergillus niger and Rhizoctonia bataticola. Some of the newly synthesised compounds have been evaluated for antituberculosis activity against Mycobacterium tuberculosis H37Rv strain by BACTEC radiometric system at Southern Research Institute, Birmingham, AL and Frederick Research Centre, Frederick, MD. Significant antimicrobial activity is observed against Escherichia coli and Rhizoctonia bataticola. A few compounds also exhibited interesting antitubercular activity against Mycobacterium tuberculosis H37Rv strain.


2019 ◽  
Vol 31 (4) ◽  
pp. 965-970 ◽  
Author(s):  
Veerabhadrayya S. Negalurmath ◽  
Obelannavar Kotresh ◽  
Mahantesha Basanagouda

In the present study, a series of benzofuran-oxadiazole conjugates 7(a-o) was designed, synthesized and characterized through IR, 1H NMR, 13C NMR and mass spectral data. All the compounds were screened for preliminary antitubercular activity against Mycobacterium phlei and Mycobacterium tuberculosis H37RV. Among all the target compounds, the compound possessing chlorine (7k, MIC 1.56 μg/mL) and bromine (7m, MIC 1.56 μg/mL) on 6th position of benzofuran showed highest activity against Mycobacterium phlei. Whereas, bromine on either 5th position (7l, MIC 3.125 μg/mL) or 6th position (7m MIC 3.125 μg/mL) on benzofuran exhibited highest activity for Mycobacterium tuberculosis (H37 RV).


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 2613-2622
Author(s):  
Sajida. Munadi. Th.AL-Suraify ◽  
Mohammed Abdul-Mounther Othman

In general terms, medicinal chemistry manages the revelation & plan of recent remedial synthetic concoctions & its uses as meds. Throughout the most recent couple of decades, mixes bearing heterocyclic cores have gotten considerably more consideration of the scientific expert, because of their expansive chemo remedial exercises, for example, calming, anthelmintic, hostile to tubercular, against parasitic & hostile to microbial exercises. Furthermore, Heterocycles & medicines are both interred related, the human is totally dependent on drugs & most of the drugs are derived from heterocyclic compounds. Hetero cycles & their derivatives have been excited regards chemist mainly due to broad-spectrum chemical & pharmacological activities. Most of the heterocyclic compounds are naturally occurs & playing the important role of metabolism regards cells of living. There has been a bigger count of pharmacologically attracted compounds of heterocyclic, several of which have been under continues clinical utilization. This paper presented a detailed study of synthesis which is spectrally detected Heterocyclic compounds, in results described the antibacterial activity of (e)-s-4-(is nicotinamide)-5-(phenoxymethyl)-4h-1, 2, 4-triazol-3-yl 3-(substituted phenyl) prop-2- enethioate. (7a-7f) and antifungal activity of (e)-s-4-(isonicotinamido)-5-(phenoxymethyl)-4h-1, 2, 4-triazol-3-yl 3-(substituted phenyl) prop-2-enethioate. (7a-7f), antitubercular activity of against mycobacterium tuberculosis h37rv presented the scope of this paper.


2020 ◽  
Vol 32 (11) ◽  
pp. 2713-2721
Author(s):  
S. Triveni ◽  
C. Naresh Babu ◽  
E. Bhargav ◽  
M. Vijaya Jyothi

To design and synthesize novel triazoles, indazoles and aminopyridines from various (thiophene-2-yl)prop-2-en-1-one derivatives as antitubercular leads by in silico and in vitro methods. in silco Drug design, ADME prediction and molecular docking studies were performed to assess drug likeliness and antitubercular potential of all 30 novel triazoles, indazoles and aminopyridines. in silico Drug design studies revealed that the synthetic routes applied were appropriate according to the calculations of Swiss-ADME that measure synthetic accessibility. Most of the synthesized compounds found to have considerable binding score with enoyl ACP reductase enzyme of Mycobacterium tuberculosis. All the synthesized compounds were evaluated for antitubercular potential against Drug Resistant Mycobacterium tuberculosis H37Rv strain by Luciferase reporter assay method. Most of the synthesized compounds exhibited remarkable antitubercular potential against resistant strain.


2004 ◽  
Vol 72 (1) ◽  
pp. 35-41 ◽  
Author(s):  
D. Sriram ◽  
K. Jyothi Mallika ◽  
P. Yogeeswari

3-Substituted-5-(4-pyridylcarboxamide)tetrahydro-2H-[1,3,5]thiadizine-2-thione derivatives (1-9) were synthesized as derivatives of isoniazid (INH) to overcome the resistance developed with its therapeutic use. The structures were confirmed by their spectral and elemental analyses data. These derivatives revealed higher lipophilicity compared with INH. The antimycobacterial activity of the synthesized compounds and INH was evaluated in vitro against Mycobacterium tuberculosis H37Rv at 6.25 µg/ml in BACTEC 12B medium using the BACTEC 460 radiometric system. The derivatives exhibited antitubercular activity.


Author(s):  
Asif HUSAIN ◽  
Aftab AHMAD ◽  
Anil BHANDARI ◽  
Veerma RAM

Two series of 6-pyridazinone derivatives (17-30) were synthesized and evaluated for antitubercular activities against the Mycobacterium tuberculosis H37Rv strain. The results indicated that among the synthesized compounds, 5-( 4-hydroxy-3-methoxybenzyl}-3-phenyl-1,6-dihydro-6-pyridazinone (23) showed good antitubercular activity. Three more compounds, (18, 25 & 27) were significant in their antitubercular action. The present study reveals the antitubercular potential of 6-pyridazinones.


2015 ◽  
Vol 3 (1) ◽  
pp. 82-96 ◽  
Author(s):  
Christophe Menendez ◽  
Giorgia Mori ◽  
Mathilde Maillot ◽  
Isabelle Fabing ◽  
Chantal Carayon ◽  
...  

A new series of β-hydroxytriazoles were synthesized and evaluated as Mycobacterium tuberculosis inhibitors. Our strategy implied the synthesis of alkyne precursors through a Barbier reaction between benzaldehydes and propargyl bromide followed by click chemistry to afford substituted β-hydroxyl benzyltriazoles. These compounds are also key intermediates either for oxidation reactions leading to α,β-diketotriazoles or for elimination reactions affording styryl triazoles. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv resulted in compounds with MIC up to 7 μM.


Sign in / Sign up

Export Citation Format

Share Document