Recent Advances in Bioreactors in Tissue Engineering and Regenerative Medicine

2013 ◽  
Vol 2 (2) ◽  
pp. 133-144 ◽  
Author(s):  
J.P. Ruiz ◽  
N. Ecker ◽  
D. Pawley ◽  
H.S. Cheung
Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3072
Author(s):  
Motaharesadat Hosseini ◽  
Masoud Mozafari

Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial’s characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.


2017 ◽  
Vol 8 (30) ◽  
pp. 4309-4321 ◽  
Author(s):  
Dapeng Li ◽  
Tianjiao Liu ◽  
Xiaoqing Yu ◽  
Di Wu ◽  
Zhiqiang Su

In this review, we demonstrated the recent advances in the fabrication strategies of graphene–biomacromolecule hybrid materials and their applications in the field of tissue engineering, such as implant materials, cell culture scaffolds, and regenerative medicine.


2021 ◽  
Author(s):  
Siavash Iravani ◽  
Rajender S. Varma

Tissue engineering and regenerative medicine applications of MXenes are described along with present challenges and future perspectives.


2012 ◽  
Vol 46 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Sumrita Bhat ◽  
Ashok Kumar

ABSTRACT Limitations with the conventional methods have bought biomaterials to the forefront for the repair and restoration of tissue functions. Recent advances in the area of biomaterials have revolutionized the field of tissue engineering and regenerative medicine. According to the nature of polymers they are divided into different classes and each one has found applicability in the area of regenerative medicine. Each class of biomaterials has a set of properties which makes them appropriate for a specific application. The most important property is the behavior of biomaterials when implanted in vivo. It should not elicit any immune rejection reactions neither should its byproducts be toxic to animal tissue. Any type of the biomaterial can be fabricated into a three-dimensional scaffold which can be used as housing for the initial growth and proliferation of the specific cell type. In addition to the conventional methods of scaffold fabrication few contemporary methods include ‘hydrogels’ and ‘cryogels’. These matrices possess interconnected porous network which facilitates the cell migration and proliferation. These gel matrices can be fabricated from both natural and synthetic polymers and have shown applicability in different areas of tissue engineering. Biomaterials have shown applicability as cardiovascular implants, orthopedic implants, dental implants, etc. Furthermore, recent advances in the regenerative medicine have shown that in addition to the use of autologous and allogenic sources, stem cells can prove to be a very good alternative. Stem cells interaction with biomaterials has shown applicability in the regenerative medicine and thus can have an immense potential in future. How to cite this article Bhat S, Kumar A. Biomaterials in Regenerative Medicine. J Postgrad Med Edu Res 2012;46(2):81-89.


2015 ◽  
Vol 6 (5) ◽  
pp. 291-298
Author(s):  
Barbara Różalska ◽  
Bartłomiej Micota ◽  
Małgorzata Paszkiewicz ◽  
Beata Sadowska

2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2015 ◽  
Vol 21 (12) ◽  
pp. 1506-1516 ◽  
Author(s):  
Nicolas Hanauer ◽  
Pierre Latreille ◽  
Shaker Alsharif ◽  
Xavier Banquy

Sign in / Sign up

Export Citation Format

Share Document