A Review on Data Mining Techniques Towards Water Sustainability Issues

2020 ◽  
Vol 13 (5) ◽  
pp. 818-826
Author(s):  
Ranjan Kumar Panda ◽  
A. Sai Sabitha ◽  
Vikas Deep

Sustainability is defined as the practice of protecting natural resources for future use without harming the nature. Sustainable development includes the environmental, social, political, and economic issues faced by human being for existence. Water is the most vital resource for living being on this earth. The natural resources are being exploited with the increase in world population and shortfall of these resources may threaten humanity in the future. Water sustainability is a part of environmental sustainability. The water crisis is increasing gradually in many places of the world due to agricultural and industrial usage and rapid urbanization. Data mining tools and techniques provide a powerful methodology to understand water sustainability issues using rich environmental data and also helps in building models for possible optimization and reengineering. In this research work, a review on usage of supervised or unsupervised learning algorithms in water sustainability issues like water quality assessment, waste water collection system and water consumption is presented. Advanced technologies have also helped to resolve major water sustainability issues. Some major data mining optimization algorithms have been compared which are used in piped water distribution networks.

2017 ◽  
Vol 19 (6) ◽  
pp. 838-852 ◽  
Author(s):  
Agathoklis Agathokleous ◽  
Chrystalleni Christodoulou ◽  
Symeon E. Christodoulou

Abstract Water authorities in countries facing water shortage problems are implementing intermittent water supply (IWS) policies, as a measure to conserve and control their national water resources. Implementation of such measures affects the behaviour of the water pipe systems during the operation stage. The research work presented herein presents a model simulating the behaviour of urban water distribution networks (WDNs) under normal operating conditions, as well as during a period of IWS operations. The modelling and analysis, based on an eight-year dataset (2003–2010) from a local Water Board, takes into account information related to breakage incidents within the WDN as well as external factors to perform vulnerability assessment of the pipe network. The results of the performed survival and cluster analysis show that during the implementation period of IWS operations, and right after that period, there is a significant increase in the deterioration rate of the affected network. Further, there is a change in the comparative importance of the factors affecting the network condition and their contribution to the WDN vulnerability.


2020 ◽  
Vol 14 (1) ◽  
pp. 380-387
Author(s):  
Jasem M. Alhumoud ◽  
Nourah Almeshaan

Background: Time series is a sequence of measurements made at regular time intervals. Tremendous work has been done on pipe break investigation and maintenance, using different models. However, the authors have not found any research work on pipe failures in water distribution networks using time series. Objective: The principal objective of this paper was to investigate the applications of time series analysis in modeling man-made (pipe breaks) and natural (rainfall) environmental systems. Methods: This objective was satisfied by employing the Time-Domain (Box-Jenkins) approach to assess two case studies in Kuwait of a water distribution network (pipe failures), and from rainfall rates measurement of a solid waste disposal site, respectively. The statistical analysis of these data was conducted with the aid of the BMDP and SAS computer software packages and by the use of the P2T programming procedure for the Box-Jenkins method. Results: The results showed a significant correlation between the data and the time series models provides good estimates of pipe reliability and rainfall measurements. Conclusion: Based on the significant results, time series analyses could and should be useful by water authorities in planning pipe maintenance and inspection. Moreover, it is recommended and it would be very useful to conduct similar studies on pipes carrying other fluids such as gas, air and oil.


2019 ◽  
Vol 2 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Abdulla-Al Kafy ◽  
Muhaiminul Islam ◽  
Abdur Rouf Khan ◽  
Lamia Ferdous ◽  
Md. Mamun Hossain ◽  
...  

Surface water bodies are one of the irreplaceable natural resources for human survival, and it extensively reduces with increasing the world population. This study modeled the spatiotemporal changes of land use / land cover (LULC) and identified the most influential LULC parameters, which contributes in the reduction of surface water bodies using the Landsat 4 and 5 TM and Landsat 8 OLI images (1992-2017). Rajshahi City Corporation is situated in the Northern piece of Bangladesh. A maximum likelihood supervised images classification algorithm was used for detection of changes in LULC. Matrix union technique was used for identifying the prominent LULC parameters. About 14% of water bodies were filled up in twenty-five year (1992-2017) due to rapid urbanization in Rajshahi City Corporation area. This study can provide an essential move towards necessary actions for preservation of surface water bodies to maintain the ecological balance and environmental sustainability.


2012 ◽  
Vol 12 (4) ◽  
pp. 523-530 ◽  
Author(s):  
S. Christodoulou ◽  
A. Agathokleous

Faced with extended periods of drought and short supply of water, arid-weather countries have turned to intermittent water supply (IWS) as a means to reduce water consumption and to prolong their national water reserves. Unfortunately, such drastic measures usually fail to consider the effects of intermittent supply on the condition of piping networks and the resulting water losses, inefficiencies and overall maintenance cost on these networks. Presented herein is research work on the effects of IWS on the vulnerability of urban water distribution networks (UWDN) based on a 3-year dataset from major urban centres in Cyprus. The dataset includes information on breakage incidents, operating network parameters, external factors and vulnerability assessment and by use of data-mining and survival analysis techniques evaluates the effects of such intermittent supply strategies on the vulnerability of the water pipes and on the sustainability of the strategy.


10.29007/gvnz ◽  
2018 ◽  
Author(s):  
Armando Di Nardo ◽  
Michele Di Natale ◽  
Anna Di Mauro ◽  
Eva Martínez Díaz ◽  
Jose Antonio Blázquez Garcia ◽  
...  

The recent development and applications of social network theory in many fields of engineering (electricity, gas, transport, water, etc.) allows both the understanding of networks and to improve their management. Social network theory coupled to the availability of real time data and big data analysis techniques can change drastically the traditional approaches to manage civil networks. Recently, some authors are working to apply this novel approach, based on social network theory, on the water distribution networks using: a) graph partitioning algorithms to define optimal district meter areas both for water losses identification and for water network protection, b) innovative topological, energy and hydraulic indices to analyze performance; and c) GIS (Geographical Information System) to provide a more effective display of results and to improve network behavior in specific operational conditions. In this paper, a novel release 3.5 of SWANP software, that implements all these features, was tested on a real large water network in Alcalá de Henares, Spain.


2020 ◽  
Vol 21 (2) ◽  
pp. 227-235
Author(s):  
Muhammad Rizki Apritama ◽  
I Wayan Koko Suryawan ◽  
Yosef Adicita

ABSTRACTThe clean water supply system network on Lengkang Kecil Island was developed in 2019. A small portion of the community's freshwater comes from harvesting rainwater and dug wells, which are only obtained during the rainy season. The primary source of clean water used by the community comes from underwater pipelines with a daily discharge of 0.86 l/sec. The water supply of the Lengkang Kecil Island community is 74.3 m3/day, with 146 House Connections (HCs) and to serve public facilities such as elementary schools, primary health centers, and mosques. Hydraulic evaluation of clean water distribution using EPANET 2.0 software on flow velocity shows the lowest rate of 0.29 m/s and the highest of 1.21 m/s. The lowest pressure value in the distribution system is 6.94-6.96 m and headloss units in the range 0.08-0.25 m/km. These three criteria are still within the distribution network design criteria (feasible). A carbon footprint can be calculated from each activity from the analysis of the evaluation of clean water distribution networks. The most massive emissions came from pumping activities with 131 kg CO2-eq, followed by emissions from wastewater 62.5 kgCO2-eq. Further research is needed to determine the quality of wastewater and the design for a centralized wastewater treatment plant (IPALT) to improve Lengkang Kecil Island residents' living standards.Keywords: Lengkang Kecil Island, water, EPANET, carbon footprintABSTRAKJaringan sistem penyediaan air bersih pada Pulau Lengkang Kecil dimulai pada tahun 2019. Sebagian kecil air bersih yang digunakan masyarakat berasal dari pemanenan air hujan dan sumur gali yang hanya didapat pada musim hujan. Sumber air bersih utama yang digunakan masyarakat berasal dari pengaliran perpipaan bawah laut dengan debit harian 0,86 l/detik. Kebutuhan air masyarakat Pulau Lengkang Kecil adalah 74,3 m3/hari dengan 146 Sambungan Rumah (SR) serta untuk melayani fasilitas umum seperti sekolah dasar (SD), puskesmas, dan masjid. Evaluasi hidrolis distribusi air bersih dengan menggunakan software EPANET 2.0 terhadap kriteria kecepatan aliran menunjukkan nilai terendah 0,29 m/s dan tertinggi 1,21 m/s. Nilai sisa tekan dalam sistem distribusi adalah 6,94–6,96 m dan unit headloss pada kisaran 0,08–0,25 m/km. Ketiga kriteria ini masih berada dalam kriteria desain jaringan distribusi (layak). Dari analisis evaluasi jaringan distribusi air bersih, dapat dihitung jejak karbon yang dihasilkan dari setiap kegiatannya. Emisi terbesar berasal dari kegiatan pemompaan dengan nilai 131 kgCO2-eq, diikuti dengan emisi yang berasal dari air limbah dengan nilai 62,5 kgCO2-eq. Penelitian lanjutan diperlukan untuk mengetahui kualitas dari air limbah dan desain untuk instalasi pengolahan air limbah terpusat (IPALT) untuk meningkatkan taraf hidup penduduk Pulau Lengkang Kecil.Kata kunci: Pulau Lengkang Kecil, air, EPANET, jejak karbon


2005 ◽  
Vol 5 (2) ◽  
pp. 31-38
Author(s):  
A. Asakura ◽  
A. Koizumi ◽  
O. Odanagi ◽  
H. Watanabe ◽  
T. Inakazu

In Japan most of the water distribution networks were constructed during the 1960s to 1970s. Since these pipelines were used for a long period, pipeline rehabilitation is necessary to maintain water supply. Although investment for pipeline rehabilitation has to be planned in terms of cost-effectiveness, no standard method has been established because pipelines were replaced on emergency and ad hoc basis in the past. In this paper, a method to determine the maintenance of the water supply on an optimal basis with a fixed budget for a water distribution network is proposed. Firstly, a method to quantify the benefits of pipeline rehabilitation is examined. Secondly, two models using Integer Programming and Monte Carlo simulation to maximize the benefits of pipeline rehabilitation with limited budget were considered, and they are applied to a model case and a case study. Based on these studies, it is concluded that the Monte Carlo simulation model to calculate the appropriate investment for the pipeline rehabilitation planning is both convenient and practical.


Sign in / Sign up

Export Citation Format

Share Document