Conformable Fractional SEIR Epidemic Model With Treatment

Author(s):  
Arti Malik ◽  
Nitendra Kumar ◽  
Khursheed Alam

Background: The present paper is based on models of conformable fractional differential equation to describe the dynamics of certain epidemics. Methods: In this paper we have divided the population in the susceptible, exposed, infectious, recovered and also describe the treatment modalities. Results: The analytical study of the model show two equilibrium points (disease free equilibrium and endemic equilibrium). Conclusion: For both cases local asymptotic stability has been proven. In the conclusion we have presented the numerical simulation.

2019 ◽  
Vol 12 (4) ◽  
pp. 1533-1552
Author(s):  
Kambire Famane ◽  
Gouba Elisée ◽  
Tao Sadou ◽  
Blaise Some

In this paper, we have formulated a new deterministic model to describe the dynamics of the spread of chikunguya between humans and mosquitoes populations. This model takes into account the variation in mortality of humans and mosquitoes due to other causes than chikungunya disease, the decay of acquired immunity and the immune sytem boosting. From the analysis, itappears that the model is well posed from the mathematical and epidemiological standpoint. The existence of a single disease free equilibrium has been proved. An explicit formula, depending on the parameters of the model, has been obtained for the basic reproduction number R0 which is used in epidemiology. The local asymptotic stability of the disease free equilibrium has been proved. The numerical simulation of the model has confirmed the local asymptotic stability of the diseasefree equilbrium and the existence of endmic equilibrium. The varying effects of the immunity parameters has been analyzed numerically in order to provide better conditions for reducing the transmission of the disease.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650092 ◽  
Author(s):  
Qamar Din

In this paper, we study the qualitative behavior of a discrete-time epidemic model. More precisely, we investigate equilibrium points, asymptotic stability of both disease-free equilibrium and the endemic equilibrium. Furthermore, by using comparison method, we obtain the global stability of these equilibrium points under certain parametric conditions. Some illustrative examples are provided to support our theoretical discussion.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3664-3670

The present model is devoted to an analytical study of a three species syn-ecological model which the 1 st species ( ) N1 ammensal on the 2 nd species ( ) N2 and 2 nd species ( ) N2 ammensal on the 3 rd species ( ) N3 . Here 1 st species and 2 nd species are neutral to each other. A time delay is established between 1 st species and 2 nd species and 2 nd species and 3rd species. All attainable equilibrium points of the model are known and native stability for each case is mentioned and also the global stability of co-existing state is discussed by constructing appropriate Lyapunov operate. Further, precise solutions of perturbed equations are derived. The steadiness analysis is supported by numerical simulation victimization MatLab.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mouhcine Naim ◽  
Fouad Lahmidi

The purpose of this paper is to investigate the stability of a deterministic and stochastic SIS epidemic model with double epidemic hypothesis and specific nonlinear incidence rate. We prove the local asymptotic stability of the equilibria of the deterministic model. Moreover, by constructing a suitable Lyapunov function, we obtain a sufficient condition for the global stability of the disease-free equilibrium. For the stochastic model, we establish global existence and positivity of the solution. Thereafter, stochastic stability of the disease-free equilibrium in almost sure exponential and pth moment exponential is investigated. Finally, numerical examples are presented.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750038 ◽  
Author(s):  
Lili Liu ◽  
Xianning Liu

The global dynamics of an SVEIR epidemic model with age-dependent waning immunity, latency and relapse are studied. Sharp threshold properties for global asymptotic stability of both disease-free equilibrium and endemic equilibrium are given. The asymptotic smoothness, uniform persistence and the existence of interior global attractor of the semi-flow generated by a family of solutions of the system are also addressed. Furthermore, some related strategies for controlling the spread of diseases are discussed.


2016 ◽  
Vol 9 ◽  
pp. 26-32
Author(s):  
Tripuraribhatla Vidyanath ◽  
K. Lakshmi Narayan ◽  
Shahnaz Bathul

The present paper is devoted to an analytical study of a three species ecological model in which a predator is preying on the other two species which are mutually helping each other. In addition to that, all the three species are provided with an alternate food. The model is characterized by a set of first order non-linear differential equations. All the possible equilibrium points of the model have been derived and the local and global stability for the positive equilibrium point is discussed and supported by the numerical simulation using the MATLAB.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Santiago Alonso-Quesada ◽  
Manuel De la Sen ◽  
Raúl Nistal

This paper analyses an SIRS epidemic model with the vaccination of susceptible individuals and treatment of infectious ones. Both actions are governed by a designed control system whose inputs are the subpopulations of the epidemic model. In addition, the vaccination of a proportion of newborns is considered. The control reproduction number Rc of the controlled epidemic model is calculated, and its influence in the existence and stability of equilibrium points is studied. If such a number is smaller than a threshold value Rc, then the model has a unique equilibrium point: the so-called disease-free equilibrium point at which there are not infectious individuals. Furthermore, such an equilibrium point is locally and globally asymptotically stable. On the contrary, if Rc>Rc, then the model has two equilibrium points: the referred disease-free one, which is unstable, and an endemic one at which there are infectious individuals. The proposed control strategy provides several free-design parameters that influence both values Rc and Rc. Then, such parameters can be appropriately adjusted for guaranteeing the non-existence of the endemic equilibrium point and, in this way, eradicating the persistence of the infectious disease.


Author(s):  
Khadija Akdim ◽  
Adil Ez-Zetouni ◽  
Mehdi Zahid

In this paper, we investigate a stochastic vaccinated epidemic model with a general awareness-induced incidence perturbed by Lévy noise. First, we show that this model has a unique global positive solution. Therefore, we establish the dynamic behavior of the solution around both disease-free and endemic equilibrium points. Furthermore, when [Formula: see text], we give sufficient conditions for the existence of an ergodic stationary distribution to the model when the jump part in the Lévy noise is null. Finally, we present some examples to illustrate the analytical results by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document