Hybrid Bast Fibre Strengthened Thermoset Composites

Author(s):  
Francisco Maciel Monticeli ◽  
Ana Karoline dos Reis ◽  
Roberta Motta Neves ◽  
Luis Felipe de Paula Santos ◽  
Edson Cocchieri Botelho ◽  
...  

The thermoplastic and thermoset laminates reinforced with different fibers generate variations in the laminated composite mechanical behavior. This work aims to analyze thermoplastic and thermoset composites creep behavior with a reduced number of experiments, applying curve-fitting analytical models (Weibull and Findley) and statistical approach (ANOVA, F-test, and SRM) in order to describe creep behavior. Creep tests were carried out using a design of experiments to define parameter levels, aiming to reduce the number of the experiments, keeping reliability relevance. The temperature shows a stronger influence of creep deformation compared with the use of distinct materials. Thermoplastic matrices seem to be more sensitive to deformation, decreasing the reinforcement contribution. On the other hand, the creep resistance of the thermoset matrix conducts a significant contribution of strain behavior for the reinforcement used. The Findley model showed a temperature-dependent response. While, the Weibull-based model exhibits temperature and material-dependence, ensuring a greater sensitivity range of the parameters applied, an essential factor for a more realistic method description.


Author(s):  
Ikra Iftekhar Shuvo ◽  
Md. Saiful Hoque ◽  
Md. Shadhin ◽  
Lovely K. M. Khandakar

2007 ◽  
Vol 34 (8) ◽  
pp. 737 ◽  
Author(s):  
Mary A. De Pauw ◽  
John J. Vidmar ◽  
JoAnn Collins ◽  
Rick A. Bennett ◽  
Michael K. Deyholos

The mechanisms underlying bast fibre differentiation in hemp (Cannabis sativa L.) are largely unknown. We hybridised a cDNA microarray with RNA from fibre enriched tissues extracted at three different positions along the stem axis. Accordingly, we identified transcripts that were enriched in tissues in which phloem fibres were elongating or undergoing secondary wall thickening. These results were consistent with a dynamic pattern of cell wall deposition involving tissue specific expression of a large set of distinct glycosyltransferases and glycosylhydrolases apparently acting on polymers containing galactans, mannans, xylans, and glucans, as well as raffinose-series disaccharides. Putative arabinogalactan proteins and lipid transfer proteins were among the most highly enriched transcripts in various stem segments, with different complements of each expressed at each stage of development. We also detected stage-specific expression of brassinosteroid-related transcripts, various transporters, polyamine and phenylpropanoid related genes, and seven putative transcription factors. Finally, we observed enrichment of many transcripts with unknown biochemical function, some of which had been previously implicated in fibre development in poplar or cotton. Together these data complement and extend existing biochemical models of bast fibre development and secondary wall deposition and highlight uncharacterised, but conserved, components of these processes.


2017 ◽  
Vol 61 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Albert ten Busschen

2010 ◽  
Vol 114 (51) ◽  
pp. 22424-22430 ◽  
Author(s):  
Junkal Gutierrez ◽  
Agnieszka Tercjak ◽  
Iñaki Mondragon

2020 ◽  
Vol 18 (1) ◽  
pp. 50-56
Author(s):  
S.O. Olanipekun ◽  
A.O. Togun ◽  
S.A. Adejumo ◽  
O.N. Adeniyan ◽  
A.K. Adebayo

Kenaf is a multi-purpose crop with numerous industrial uses. Its production is constrained by poor cultural and agronomic practices which reduce yield. Inappropriate spacing among others could result in low yield. Effect of plant spacing on growth and yield of kenaf was investigated in Ibadan, Nigeria. Kenaf seed was sown (2 plants/stand) at three plant spacing: 50×15, 50×20, 50×25 cm was assessed for seed and bast fibre yields using randomized complete block design (RCBD) with three replicates. The analysis was done using statistical analysis system (SAS). Plant spacing differed significantly for bast fibre and seed yields. Highest bast fibre yield (0.9±0.03) and seed yield (0.5±0.01) were obtained at 50×20 cm and 50×25 cm spacing, respectively, while the lowest bast fibre yield (0.7±0.01) and seed yield (0.3±0.01) were obtained at 50×15 cm spacing. Spacing of 50 × 15 cm and 50 × 20 cm are appropriate when planting for fibre while 50 × 25cm is appropriate for seed production. Keywords: Kenaf, Spacing, Fibre and Seed yield.


2019 ◽  
Vol 127 ◽  
pp. 429-434 ◽  
Author(s):  
Maryam Jouyandeh ◽  
Seyed Mohammad Reza Paran ◽  
Ali Jannesari ◽  
Mohammad Reza Saeb
Keyword(s):  

2010 ◽  
Vol 442 ◽  
pp. 335-341
Author(s):  
N. Ahmed ◽  
Mohammad Bilal Khan

The paper relates to high concentration particle doped composites based on thermosetting polymer systems in which the sequential addition of particles of certain size distribution is followed by curing and casting of the slurry to form a thermoset composite. Conventionally, at a threshold of beyond 90% of particles by weight of the polymer using triglyceride, the mechanical properties of the composite exhibit a sharp decline. The present research mitigates this behavior by incorporating a unique combination of cross-linking agents in the base polymer to impart exceptional mechanical properties to the composite. More specifically, the base polymer consists of butadiene, with triglyceride as cross-linking agent together with hydroxy-alkane as the chain extension precursors, when tune to the appropriate level of hard segment ratio in the polymer. An added advantage according to the present work resides in the analytical nature of butadiene pre-polymer as opposed to natural product; traditional composites based on natural sources are hampered by their inconsistent chemical composition and poor shelf life in the fabricated composite. The thermoset composite according the present research exhibits superior tensile strength (200-300 psi) properties using particle loading as high as 92% by weight of the fabricated composite as measured on a Tinius Olsen machine. Dynamic Mechanical Testing reveals interesting combination of storage and loss moduli in the fabricated specimens as a function of optimizing the thermal response of the viscoelastic composite to imposed vibration loading.


2009 ◽  
Vol 114 (4) ◽  
pp. 2502-2508 ◽  
Author(s):  
Dan Åkesson ◽  
Mikael Skrifvars ◽  
Pernilla Walkenström

Sign in / Sign up

Export Citation Format

Share Document