Effluent suspended solid control of activated sludge process by fuzzy control approach

1996 ◽  
Vol 68 (6) ◽  
pp. 1045-1053 ◽  
Author(s):  
Yung-Pin Tsai ◽  
Chaio-Fuei Ouyang ◽  
Ming-Yang Wu ◽  
Wei-Ling Chiang
1993 ◽  
Vol 28 (11-12) ◽  
pp. 355-367 ◽  
Author(s):  
Y. P. Tsai ◽  
C. F. Ouyang ◽  
M. Y. Wu ◽  
W. L. Chiang

The effluent total BOD (or COD) concentration of the activated sludge process (A.S.P.) usually increases with suspended solid concentration. How to reduce effluent S.S. concentration, therefore, is the key issue of treatment efficiency for A.S.P. The varied return sludge and influent flow rate are two major operational factors of those affecting effluent S.S. concentration. However, the wastewater flow rate and substrate concentration in municipal wastewater treatment plant, due to the differences of city scale and life style, are significantly time-varied every day. Based on the above, the purpose of this study is to control in timely fashion return sludge flow rate with the variation of influent flow rate to minimize effluent S.S. concentration and meanwhile decrease the effluent total BOD (or COD) concentration. The fuzzy control theory is utilized in this study to forecast and control effluent S.S. concentration and further predict the MLSS concentration in aeration tank. It reveals that the inferred control strategies not only enable one to decrease effluent S.S.


1998 ◽  
Vol 31 (8) ◽  
pp. 509-514 ◽  
Author(s):  
Keisuke Iwahori ◽  
Koichiro Yamakawa ◽  
Masanori Fujita

Author(s):  
Afef Boudagga ◽  
Habib Dimassi ◽  
Salim Hadj Said ◽  
Faouzi M’Sahli

In this paper, an adaptive observer-based predictive controller is designed for the alternating activated sludge process which represents a nonlinear hybrid system. Precisely, our objective is to control the dissolved oxygen concentration during the aerobic phase. First, a hybrid adaptive observer is designed to estimate conjointly the unmeasured state (the ammonia concentration) and the unknown parameter (the coefficient of performance of heterotrophic biomass). Then the estimated signals are used in the output feedback predictive control law. The convergence of the state estimation, parameter reconstruction and tracking control errors are established through a Lyapunov stability analysis. Numerical simulations are dedicated to highlight the good performances of the developed output feedback control approach.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Young H. Yoon ◽  
Jae R. Park ◽  
Sang W. Ahn ◽  
Kwang B. Ko ◽  
Kyung J. Min ◽  
...  

Hybrid Activated Sludge Process (HASP) with IMET was developed and applied to an activated sludge process for the advanced nutrient treatment in Korea. The characteristics of nitrogen removal from the HASP were investigated through a kinetic study by batch-type experiment. Online DB analysis produced from the IMET was conducted for the nutrient removal performance in the field demonstration plant treating 10,000 m3/day in G city of Korea. In this paper, we aimed to determine the effect of increasing NHM4+-N load on the specific nitrification rate (SNR) and the specific denitrification rate (SDNR) through a batch-type experiment, and to estimate the net reaction time for the phase-transfer rate using online DB analysis in the HASP operation. Experimental results include: (1) both the nitrification and denitrification followed first-order kinetics; (2) the maximum SNR and SDNR were 4.0301 mgN/gVSS·hr and 2.785 mgN/gVSS·hr, respectively; (3) comparison of reaction rates between nitrification and denitrification from the non-linear regression analysis found that nitrification rate was higher than denitrification.


1987 ◽  
Vol 22 (3) ◽  
pp. 437-443 ◽  
Author(s):  
N. Kosaric ◽  
Z. Duvnjak

Abstract Aerobic sludge from a municipal activated sludge treatment plant, sludge from a conventional municipal anaerobic digester, aerobic sludge from an activated sludge process of a petroleum refinery, and granular sludge from an upflow sludge blanket reactor (USBR) were tested in the deemulsification of a water-in-oil emulsion. All sludges except the last one, showed a good deemulsification capability and could he used for a partial deemulsification of such emulsions. The rate and degree of the deemulsifications increased with an increase in sludge concentrations. The deemulsifications were faster at 85°C and required smaller amounts of sludge than in the case of the deemulsifications at room temperature. An extended stirring (up to a certain limit) in the course of the dispersion of sludge emulsion helped the deemulsification. Too vigorous agitation had an adverse effect. The deemulsification effect of sludge became less visible with an increase in the dilution of emulsion which caused an increase in its spontaneous deemulsification.


Sign in / Sign up

Export Citation Format

Share Document