Enhanced Removal of Organics from Primary Settling Tank of an Activated Sludge Process using Thickened and Aerobically Digested Sludges as Flocculent

2006 ◽  
Vol 54 (10) ◽  
pp. 55-66 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
Y. Guan ◽  
H. Satoh ◽  
T. Mino

Coarse pore filtration activated sludge process is a type of hybrid process in which the secondary settling tank of the conventional activated sludge process is replaced by non- woven and coarse pore filter modules. The filter has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study is to find out the effect of the microbial community structure on filter clogging in the coarse pore filtration activated sludge process under high MLSS concentration in aerobic and anoxic/aerobic (A/A) conditions. Filter clogging started from day 65 and 70 in the A/A and aerobic process, respectively, but it was more severe in the A/A process compared to that in the aerobic process. EPS contents of sludge did not change significantly during the operation in both processes, and did not have a crucial effect on the observed filter clogging. There was no strong evidence for direct effect of the type and number of metazoa on filter clogging. The main difference between aerobic sludge and A/A sludge during the filter clogging period was the relative abundance of filamentous bacteria. According to the obtained results, it can be concluded that a higher presence of filamentous bacteria could reduce the severity of filter clogging in a coarse pore filtration activated sludge process.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 9-16 ◽  
Author(s):  
Youngchul Kim ◽  
Wesley O. Pipes

In order to provide a quantitative description of solids wash-out from the settling tanks of an activated sludge process, a method for “routing” of the suspended solids through the settling tanks was developed. The objective was to develop a method which can be used to predict the mixed liquor suspended solids concentration (X) and the sludge blanket depth (SBD) in the clarifiers during transient hydraulic overloads. There were 27 individual hydraulic overloading events encountered during 31 months of study. The solids routing and the SBD prediction were performed for the individual storm flow events by using settling tank operating data. The results of solids routing analysis were found to be satisfactory. The mixed liquor solids concentration can be predicted within ± 10%. The application of a solids storage relationship developed for the settling tanks was found to be useful for describing the dynamic behavior of the SBD during transient hydraulic overloads. The solids wash-out predictions for rainstorm periods corresponded with the plant performance. Operational procedures for avoiding solids wash-out are also discussed.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2477-2480 ◽  
Author(s):  
P. Chudoba ◽  
J. Chudoba ◽  
B. Capdeville

A practical application of the concept of uncoupling between catabolism and anabolism during microbial metabolism has been studied in the case of a modified activated sludge system, called OSA (Oxic-Settling-Anaerobic). The OSA system consisted of an oxic completely mixed tank, followed by a settling tank and an anaerobic tank, situated in the returned sludge circuit of the OSA system. The periodic passageway of facultative aerobic activated sludge microorganisms through the anaerobic zone created conditions of uncoupled growth, indicated by ATP stock depletion and resulted in a consecutive reduction of activated sludge production.


2012 ◽  
Vol 599 ◽  
pp. 505-509
Author(s):  
Pei Li Lu ◽  
Zhen Liang Li

Model of a full-scale activated sludge process in a WWTP in Chongqing, China was established by coupling Activated Sludge Model No.2 (ASM2) and secondary settling tank (SST) model. Influent COD of the ASM2 was characterized through combined respirometric and physical-chemical assay and the model parameters were calibrated after evaluating their structural identifiability. The SST model is a flux model based on the consistent modeling methodology, in which a more detailed sludge settling velocity function was proposed to describe the most settling phenomena happened in SST, including discrete settling of floc, zone settling, and compression settling. The coupling model was used to simulate and optimize the operation of the activated sludge process It is concluded that: 1) the effluent COD, SS, TN and TP could be simulated well, 2) the sludge recycle ratio in the SST and the sludge concentration in the bioreactor were optimized to reduce waste sludge, increase the capability to resist load shocks and lower temperature, and improve effluent quality, and 3) an A2/O processes was proposed to upgrade the WWTP for improving the efficiency of N and P removal.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Young H. Yoon ◽  
Jae R. Park ◽  
Sang W. Ahn ◽  
Kwang B. Ko ◽  
Kyung J. Min ◽  
...  

Hybrid Activated Sludge Process (HASP) with IMET was developed and applied to an activated sludge process for the advanced nutrient treatment in Korea. The characteristics of nitrogen removal from the HASP were investigated through a kinetic study by batch-type experiment. Online DB analysis produced from the IMET was conducted for the nutrient removal performance in the field demonstration plant treating 10,000 m3/day in G city of Korea. In this paper, we aimed to determine the effect of increasing NHM4+-N load on the specific nitrification rate (SNR) and the specific denitrification rate (SDNR) through a batch-type experiment, and to estimate the net reaction time for the phase-transfer rate using online DB analysis in the HASP operation. Experimental results include: (1) both the nitrification and denitrification followed first-order kinetics; (2) the maximum SNR and SDNR were 4.0301 mgN/gVSS·hr and 2.785 mgN/gVSS·hr, respectively; (3) comparison of reaction rates between nitrification and denitrification from the non-linear regression analysis found that nitrification rate was higher than denitrification.


1987 ◽  
Vol 22 (3) ◽  
pp. 437-443 ◽  
Author(s):  
N. Kosaric ◽  
Z. Duvnjak

Abstract Aerobic sludge from a municipal activated sludge treatment plant, sludge from a conventional municipal anaerobic digester, aerobic sludge from an activated sludge process of a petroleum refinery, and granular sludge from an upflow sludge blanket reactor (USBR) were tested in the deemulsification of a water-in-oil emulsion. All sludges except the last one, showed a good deemulsification capability and could he used for a partial deemulsification of such emulsions. The rate and degree of the deemulsifications increased with an increase in sludge concentrations. The deemulsifications were faster at 85°C and required smaller amounts of sludge than in the case of the deemulsifications at room temperature. An extended stirring (up to a certain limit) in the course of the dispersion of sludge emulsion helped the deemulsification. Too vigorous agitation had an adverse effect. The deemulsification effect of sludge became less visible with an increase in the dilution of emulsion which caused an increase in its spontaneous deemulsification.


Sign in / Sign up

Export Citation Format

Share Document