Thermophilic Aerobic Treatment of High Strength Organic Production Wastes and Waste Activated Sludge from a Pharmaceutical Manufacturer: Bench-Scale Test Results and Full-Scale Design Issues

2000 ◽  
Vol 2000 (14) ◽  
pp. 470-492 ◽  
Author(s):  
Richard J. Colvin ◽  
Alan F. Rozich ◽  
Shane Gerber ◽  
Dennis Strom
1998 ◽  
Vol 38 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Junxin Liu ◽  
Weiguang Li ◽  
Xiuheng Wang ◽  
Hongyuan Liu ◽  
Baozhen Wang

In this paper, a study of a new process with nitrosofication and denitrosofication for nitrogen removal from coal gasification wastewater is reported. In the process, fibrous carriers were packed in an anoxic tank and an aerobic tank for the attached growth of the denitrifying bacteria and Nitrobacter respectively, and the suspended growth activated sludge was used in an aerobic tank for the growth of Nitrosomonas. A bench scale test has been carried out on the process, and the test results showed that using the process, 25% of the oxygen demand and 40% of the carbon source demand can be saved, and the efficiency of total nitrogen removal can increase over 10% as compared with a traditional process for biological nitrogen removal.


2005 ◽  
Vol 8 ◽  
pp. 469-480 ◽  
Author(s):  
S. Nam ◽  
J. De Ris ◽  
Peter Wu ◽  
R. Bill

1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Author(s):  
Alan R. May Estebaranz ◽  
Richard J. Williams ◽  
Simon I. Hogg ◽  
Philip W. Dyer

A laboratory scale test facility has been developed to investigate deposition in steam turbines under conditions that are representative of those in steam power generation cycles. The facility is an advanced two-reactor vessel test arrangement, which is a more flexible and more accurately controllable refinement to the single reactor vessel test arrangement described previously in ASME Paper No. GT2014-25517 [1]. The commissioning of the new test facility is described in this paper, together with the results from a series of tests over a range of steam conditions, which show the effect of steam conditions (particularly steam pressure) on the amount and type of deposits obtained. Comparisons are made between the test results and feedback/experience of copper fouling in real machines.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document