Activated Carbon As A Support In Biotrickling Filters For The Removal Of Siloxanes In Sewage Sludge Biogas

2018 ◽  
Vol 2018 (2) ◽  
pp. 377-384
Author(s):  
Eric Santos-Clotas ◽  
Alba Cabrera-Codony ◽  
Maria J Marín
Author(s):  
Yujian Zhang ◽  
Lizhi He ◽  
Guoqiao Wang ◽  
Xinxin Zhang ◽  
Ya Liu ◽  
...  

2004 ◽  
Vol 49 (1) ◽  
pp. 139-146 ◽  
Author(s):  
S. Rio ◽  
C. Faur-Brasquet ◽  
L. Le Coq ◽  
D. Lecomte ◽  
P. Le Cloirec

Sewage sludges produced from wastewater treatment plants continue to create environmental problems in terms of volume and method of valorization. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume which at the same time produces reusable by-products. This paper deals with the first step of activated carbon production from sewage sludge, the carbonization step. Experiments are carried out on viscous liquid sludge and limed sludge by varying carbonization temperature and heating rate. The results show that carbonized residue properties are interesting for activated carbon production.


2012 ◽  
Vol 253-255 ◽  
pp. 960-964 ◽  
Author(s):  
Xiao Dan Fan ◽  
Xiang Kai Zhang

The simultaneous removal of SO2 and NO was investigated with the activated carbon from sewage sludge (referred as ACS) modified by chitosan (referred as CS).The effects of CS loading and operating conditions on the simultaneous removal of SO2 and NO were analyzed. The results indicate that compared with the ACS, impregnating CS results in significant increase in SO2 or NO removal. Relative humidity enhances SO2 adsorption capacities, but not for NO. The SO2 adsorption capacities of the CS / ACS show no obvious decrease at small amount of NO in the feed. However, higher amounts of NO reduce the SO2 adsorption capacities. The opposite phenomenon appears for NO when a small amount of SO2. So a competitive sorption consists between NO and SO2. Simultaneous adsorptions for NO and SO2 is due to more active sites from CS.


Fuel ◽  
2020 ◽  
Vol 266 ◽  
pp. 117053 ◽  
Author(s):  
Yu-huan Li ◽  
Feng-min Chang ◽  
Bo Huang ◽  
Ya-peng Song ◽  
Hong-yu Zhao ◽  
...  

2020 ◽  
Vol 231 (4) ◽  
Author(s):  
M. J. Luján-Facundo ◽  
M. I. Iborra-Clar ◽  
J. A. Mendoza-Roca ◽  
M. I. Alcaina-Miranda ◽  
A. M. Maciá ◽  
...  

2018 ◽  
Vol 77 (11) ◽  
pp. 2657-2667 ◽  
Author(s):  
A. Shammay ◽  
I. Evanson ◽  
R. M. Stuetz

Abstract Three types of odour abatement systems in sewer networks in Australia were studied for 18 months to determine the removals of different compounds. Six volatile sulfurous compounds and seven volatile organic compounds (VOCs) were further investigated. All types of odour abatement systems exhibited good removal of hydrogen sulfide with the biotrickling filters (BTFs) showing the highest consistent removal. Biofilters outperformed BTFs and activated carbon (AC) filters in the removal of dimethyl mono-, di- and tri-sulfide species at the low inlet concentrations typically found. AC filters exhibited little VOC removal with no compound consistently identified as having a removal greater than 0%. Biofilters outperformed BTFs in VOC removal, yet both had high removal variability.


2017 ◽  
Vol 76 (7) ◽  
pp. 1697-1705 ◽  
Author(s):  
Tiecheng Guo ◽  
Sicong Yao ◽  
Hengli Chen ◽  
Xin Yu ◽  
Meicheng Wang ◽  
...  

Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer–Emmett–Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4–6) and around 98% for MB in a very wide pH range (pH = 2–12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions’ removal than dyes’.


Sign in / Sign up

Export Citation Format

Share Document