scholarly journals Role of IgG Plasma Cells in the Change of Protein C System in Ulcerative Colitis

2017 ◽  
Vol 08 (02) ◽  
Author(s):  
Lin XH ◽  
Wang HC ◽  
Guo L ◽  
Yang JN ◽  
Li YX ◽  
...  
1995 ◽  
Vol 74 (05) ◽  
pp. 1271-1275 ◽  
Author(s):  
C M A Henkens ◽  
V J J Bom ◽  
W van der Schaaf ◽  
P M Pelsma ◽  
C Th Smit Sibinga ◽  
...  

SummaryWe measured total and free protein S (PS), protein C (PC) and factor X (FX) in 393 healthy blood donors to assess differences in relation to sex, hormonal state and age. All measured proteins were lower in women as compared to men, as were levels in premenopausal women as compared to postmenopausal women. Multiple regression analysis showed that both age and subgroup (men, pre- and postmenopausal women) were of significance for the levels of total and free PS and PC, the subgroup effect being caused by the differences between the premenopausal women and the other groups. This indicates a role of sex-hormones, most likely estrogens, in the regulation of levels of pro- and anticoagulant factors under physiologic conditions. These differences should be taken into account in daily clinical practice and may necessitate different normal ranges for men, pre- and postmenopausal women.


1997 ◽  
Vol 77 (02) ◽  
pp. 343-349 ◽  
Author(s):  
Vibhuti D Chouhan ◽  
Raul A De La Cadena ◽  
Chandrasekaran Nagaswami ◽  
John W Weisel ◽  
Mehdi Kajani ◽  
...  

SummaryWe describe a patient with severe epistaxis, prolonged coagulation tests and decreased plasma factor V following exposure to bovine topical thrombin. Patient IgG, but not normal IgG, showed binding to immobilized thrombin (bovine > human) and fibrinogen, and to factor V by Western blotting; the binding to thrombin was inhibited by hirudin fragment 54-65. Electron microscopy of rotary shadowed preparations showed complexes with IgG molecules attached near the ends of trinodular fibrinogen molecules. Patient IgG inhibited procoagulant, anticoagulant and cell-stimulating functions of thrombin demonstrated by inhibition of fibrinogen clotting, protein C activation and platelet aggregation; thrombin hydrolysis of S-2238 was not inhibited. The results suggest that the antibody is targeted against anion-binding exosite and not catalytic site of thrombin. Antifibrinogen antibodies have not been reported in patients exposed to bovine thrombin. There is a pressing need to re-evaluate the role of bovine thrombin as a therapeutic agent.


2015 ◽  
Vol 24 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Federica Furfaro ◽  
Cristina Bezzio ◽  
Sandro Ardizzone ◽  
Alessandro Massari ◽  
Roberto De Franchis ◽  
...  

The treatment of ulcerative colitis (UC) has changed over the last decade. It is extremely important to optimize the therapies which are available nowadays and commonly used in daily clinical practice, as well as to stimulate the search for more powerful drugs for the induction and maintenance of sustained and durable remission, thus preventing further complications. Therefore, it is mandatory to identify the patients' prognostic variables associated with an aggressive clinical course and to test the most potent therapies accordingly.To date, the conventional therapeutic approach based on corticosteroids, salicylates (sulfasalazine, 5-aminosalicylic acid) or immunosuppressive agents is commonly used as a first step to induce and to maintain remission. However, in recent years, knowledge of new pathogenetic mechanisms of ulcerative colitis have allowed us to find new therapeutic targets leading to the development of new treatments that directly target proinflammatory mediators, such as TNF-alpha, cytokines, membrane migration agents, cellular therapies.The aim of this review is to provide the most significant data regarding the therapeutic role of drugs in UC and to give an overview of biological and experimental drugs that will become available in the near future. In particular, we will analyse the role of these drugs in the treatment of acute flare and maintenance of UC, as well as its importance in mucosal healing and in treating patients at a high risk of relapse.


2017 ◽  
Vol 26 (4) ◽  
pp. 425-429
Author(s):  
Kian Keyashian ◽  
Eleonora Duregon ◽  
Brian T. Brinkerhoff ◽  
Laura Bradley ◽  
Benjamin Larson ◽  
...  

.


2021 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Jan Traub ◽  
Leila Husseini ◽  
Martin S. Weber

The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.


2019 ◽  
Vol 12 ◽  
pp. 117863881983452 ◽  
Author(s):  
Jonah Stavsky ◽  
Radhashree Maitra

Ulcerative colitis (UC) is a biologically complex condition characterized by chronic, relapsing inflammation of the gastrointestinal tract. The relative incidence of this debilitating condition is increasing and sociologically damaging outcomes are a continued reality. Several etiological theories for UC are currently under investigation, spanning between genetic and environmental determinants. From an environmental perspective, previous literature reviews have demonstrated the independent effectiveness of specific diet and exercise patterns in modifying UC immuno-pathophysiology. This article explores the synergistic role of diet and aerobic exercise in the prevention, pathogenesis, and management of UC in the context of recent immunological research. Through a unifying mechanism—that is, microbial influence of colonic inflammation and immuno-pathophysiology—the simultaneous reduction of pro-inflammatory dietary sulfurous amino acid intake (ie methionine, cysteine, homocysteine, and taurine) and the upregulation of aerobic exercise frequency (which spurs the colonization of anti-inflammatory butyrate, acetate, and propionate producing microbial taxa) demonstrate the clinical efficacy of incorporating both diet and exercise modifications for UC prevention and management through pathogenic alterations.


2020 ◽  
Vol 27 (4) ◽  
pp. 163-177
Author(s):  
Mohammad Sadegh Hesamian ◽  
Nahid Eskandari

Multiple sclerosis (MS) is an unpredictable disease of the central nervous system. The cause of MS is not known completely, and pathology is specified by involved demyelinated areas in the white and gray matter of the brain and spinal cord. Inflammation and peripheral tolerance breakdown due to Treg cell defects and/or effector cell resistance are present at all stages of the disease. Several invading peripheral immune cells are included in the process of the disease such as macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma cells. Trace elements are known as elements found in soil, plants, and living organisms in small quantities. Some of them (e.g., Al, Cu, Zn, Mn, and Se) are essential for the body’s functions like catalysts in enzyme systems, energy metabolism, etc. Al toxicity and Cu, Zn, and Se toxicity and deficiency can affect the immune system and following neuron inflammation and degeneration. These processes may result in MS pathology. Of course, factors such as lifestyle, environment, and industrialization can affect levels of trace elements in the human body.


2021 ◽  
Vol 12 (1) ◽  
pp. 56-66
Author(s):  
Toumi Ryma ◽  
Arezki Samer ◽  
Imene Soufli ◽  
Hayet Rafa ◽  
Chafia Touil-Boukoffa

Inflammatory Bowel Disease (IBD) is a term used to describe a group of complex disorders of the gastrointestinal (GI) tract. IBDs include two main forms: Crohn’s Disease (CD) and Ulcerative Colitis (UC), which share similar clinical symptoms but differ in the anatomical distribution of the inflammatory lesions. The etiology of IBDs is undetermined. Several hypotheses suggest that Crohn’s Disease and Ulcerative Colitis result from an abnormal immune response against endogenous flora and luminal antigens in genetically susceptible individuals. While there is no cure for IBDs, most common treatments (medication and surgery) aim to reduce inflammation and help patients to achieve remission. There is growing evidence and focus on the prophylactic and therapeutic potential of probiotics in IBDs. Probiotics are live microorganisms that regulate the mucosal immune system, the gut microbiota and the production of active metabolites such as Short-Chain Fatty Acids (SCFAs). This review will focus on the role of intestinal dysbiosis in the immunopathogenesis of IBDs and understanding the health-promoting effects of probiotics and their metabolites.


Sign in / Sign up

Export Citation Format

Share Document