scholarly journals On the Optimality of Conservation Results for Local Reflection in Arithmetic

2013 ◽  
Vol 78 (4) ◽  
pp. 1025-1035 ◽  
Author(s):  
A. Cordón-Franco ◽  
A. Fernández-Margarit ◽  
F. F. Lara-Martín

AbstractLet T be a recursively enumerable theory extending Elementary Arithmetic EA. L. D. Beklemishev proved that the Σ2 local reflection principle for T, (T), is conservative over the Σ1 local reflection principle, (T), with respect to boolean combinations of Σ1-sentences; and asked whether this result is best possible. In this work we answer Beklemishev's question by showing that Π2-sentences are not conserved for T = EA + “f is total,” where f is any nondecreasing computable function with elementary graph. We also discuss how this result generalizes to n > 0 and obtain as an application that for n > 0, is conservative over IΣn with respect to Πn+2-sentences.

1996 ◽  
Vol 2 (4) ◽  
pp. 392-404 ◽  
Author(s):  
André Nies ◽  
Richard A. Shore ◽  
Theodore A. Slaman

§1. Introduction. Natural sets that can be enumerated by a computable function (the recursively enumerable or r.e. sets) always seem to be either actually computable (recursive) or of the same complexity (with respect to Turing computability) as the Halting Problem, the complete r.e. set K. The obvious question, first posed in Post [1944] and since then called Post's Problem is then just whether there are r.e. sets which are neither computable nor complete, i.e., neither recursive nor of the same Turing degree as K?Let be the r.e. degrees, i.e., the r.e. sets modulo the equivalence relation of equicomputable with the partial order induced by Turing computability. This structure is a partial order (indeed, an uppersemilattice or usl)with least element 0, the degree (equivalence class) of the computable sets, and greatest element 1 or 0′, the degree of K. Post's problem then asks if there are any other elements of .The (positive) solution of Post's problem by Friedberg [1957] and Muchnik [1956] was followed by various algebraic or order theoretic results that were interpreted as saying that the structure was in some way well behaved:Theorem 1.1 (Embedding theorem; Muchnik [1958], Sacks [1963]). Every countable partial ordering or even uppersemilattice can be embedded into .Theorem 1.2 (Sacks Splitting Theorem [1963b]). For every nonrecursive r.e. degreeathere are r.e. degreesb, c < asuch thatb ∨ c = a.Theorem 1.3 (Sacks Density Theorem [1964]). For every pair of nonrecursive r.e. degreesa < bthere is an r.e. degreecsuch thata < c < b.


2014 ◽  
Vol 79 (3) ◽  
pp. 733-747
Author(s):  
CLAUDIA DEGROOTE ◽  
JEROEN DEMEYER

AbstractLet L be a recursive algebraic extension of ℚ. Assume that, given α ∈ L, we can compute the roots in L of its minimal polynomial over ℚ and we can determine which roots are Aut(L)-conjugate to α. We prove that there exists a pair of polynomials that characterizes the Aut(L)-conjugates of α, and that these polynomials can be effectively computed. Assume furthermore that L can be embedded in ℝ, or in a finite extension of ℚp (with p an odd prime). Then we show that subsets of L[X]k that are recursively enumerable for every recursive presentation of L[X], are diophantine over L[X].


Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


2017 ◽  
Vol 10 (3) ◽  
pp. 455-480 ◽  
Author(s):  
BARTOSZ WCISŁO ◽  
MATEUSZ ŁEŁYK

AbstractWe prove that the theory of the extensional compositional truth predicate for the language of arithmetic with Δ0-induction scheme for the truth predicate and the full arithmetical induction scheme is not conservative over Peano Arithmetic. In addition, we show that a slightly modified theory of truth actually proves the global reflection principle over the base theory.


Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


2021 ◽  
Vol 179 (4) ◽  
pp. 361-384
Author(s):  
Zbyněk Křivka ◽  
Alexander Meduna

This paper investigates the reduction of scattered context grammars with respect to the number of non-context-free productions. It proves that every recursively enumerable language is generated by a scattered context grammar that has no more than one non-context-free production. An open problem is formulated.


1972 ◽  
Vol 37 (4) ◽  
pp. 677-682 ◽  
Author(s):  
George Metakides

Let α be a limit ordinal with the property that any “recursive” function whose domain is a proper initial segment of α has its range bounded by α. α is then called admissible (in a sense to be made precise later) and a recursion theory can be developed on it (α-recursion theory) by providing the generalized notions of α-recursively enumerable, α-recursive and α-finite. Takeuti [12] was the first to study recursive functions of ordinals, the subject owing its further development to Kripke [7], Platek [8], Kreisel [6], and Sacks [9].Infinitary logic on the other hand (i.e., the study of languages which allow expressions of infinite length) was quite extensively studied by Scott [11], Tarski, Kreisel, Karp [5] and others. Kreisel suggested in the late '50's that these languages (even which allows countable expressions but only finite quantification) were too large and that one should only allow expressions which are, in some generalized sense, finite. This made the application of generalized recursion theory to the logic of infinitary languages appear natural. In 1967 Barwise [1] was the first to present a complete formalization of the restriction of to an admissible fragment (A a countable admissible set) and to prove that completeness and compactness hold for it. [2] is an excellent reference for a detailed exposition of admissible languages.


1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


Sign in / Sign up

Export Citation Format

Share Document