scholarly journals Control of Fusarium Wilt Using Streptomyces griseus with Plant Growth-Promoting Effect on Tomato

2021 ◽  
Vol 14 (4) ◽  
pp. 1746-1753
Author(s):  
A. Anitha

The efficacy of antagonistic Streptomyces griseus was evaluated against tomato wilt disease incited by Fusarium oxysporum. Among the different formulations, Streptomyces griseus with chitin amended formulation showed effective increase in seed germination and seedling vigour. Further, talc-based formulations of S. griseus mixed with or without chitin was developed and tested under greenhouse conditions. Lowest disease severity of 19.1% was observed in plants treated with self fusant (SFSg 5) S. griseus suspension (root dipping – 9 x 108 cfu / mL) followed by 19.5% in treatment of chitin amended S. griseus (root dipping – 9 x 108 cfu/mL) was recorded over control. Plant growth of the treated traits were analyzed and compared with control. The shoot length, root length, leaf area was increased significantly over the controls by the treatment of self fusant (SFSg 5) S. griseus suspension followed by nearby values were reached in chitin amended S. griseus was recorded. The chemical treatments had less effect compared with these formulations. Histochemical studies showed that cambium layers, xylem vessels per bundle, and the vessel diameter decreased in the plants inoculated with F. oxysporum over control and changes in variables were observed in infected plants treated with S. griseus. In conclusion, S. griseus can be a potential biocontrol agent against F. oxysporum for better crop production practices.

2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 321
Author(s):  
Hazem S. Elshafie ◽  
Ippolito Camele

Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different phytopathogens for diverse crops. In particular, Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the following aspects: discovering, classification, distribution, plant growth promoting effect, and antimicrobial activity of different species of Burkholderia, shedding light on the most important secondary metabolites, their pathogenic effects, and biochemical characterization of some important species of Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and B. gladioli.


2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2017 ◽  
Vol 199 (3) ◽  
pp. 513-517 ◽  
Author(s):  
Van T. K. Pham ◽  
Hans Rediers ◽  
Maarten G. K. Ghequire ◽  
Hiep H. Nguyen ◽  
René De Mot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document