scholarly journals Increasing the pump energy efficiency of the system for discharging liquefied natural gas from large-capacity storage facilities via design improvement

Author(s):  
A. Yu. Baranov ◽  
M. I. Davydenko ◽  
Ye. V. Sokolova ◽  
O. A. Filatova

Abstract. Objective. To determine the most relevant way to improve the energy efficiency of the system for discharging liquefied natural gas (LNG) from large-capacity storage facilities. Methods. The method of analysis of existing systems for LNG discharge from storage tanks was used to identify critical (emergency) elements of the system to be improved and possible options of improving structural elements. Results. The operation of the system for discharging LNG from storage tanks was analysed and its main characteristics were described. Main problems associated with designing and building borehole pumps, as well as goals and tasks of designing new borehole pump structures were studied. The main types of LNG borehole pumps, their varieties, and types of drives were studied to choose the most optimal new option of improving pumps for systems for discharging LNG from storage tanks. Further, it will be necessary to calculate geometric parameters of the hydroturbine and operation modes of its wheel being in connection with the centrifugal pump wheel. Conclusion. Experience of using storage facilities shows that LNG pumps are the most critical units significantly increasing production risks. Therefore, the LNG borehole pump design improvement was chosen as a method to increase the energy efficiency of the system for discharging LNG from large-capacity storage facilities. Based on the considered advantages and disadvantages of structural elements of the existing LNG borehole pump design, we chose the replacement of the electric pump drive with an alternative one as the most optimal improvement method.

Author(s):  
Dong-Jin Oh ◽  
Jae-Myung Lee ◽  
Byeong-Jae Noh ◽  
Wha-Soo Kim ◽  
Ryuichi-Ando ◽  
...  

One of the most important issues associated with liquefied natural gas (LNG) storage tanks, such as LNG carrier cargo tanks and land LNG tanks, is their structural integrity. In order to ensure the operating life and safety of LNG storage tanks used under operating conditions such as thermal and cyclic loadings, the securing of safety evaluations for fatigue performance is considered to be of particular importance. There have been various efforts to reduce the production costs of LNG storage tanks, such as the optimum selection of materials and the development of new low temperature materials. This, the motivation of this study is to evaluate new material candidates for LNG storage tanks. This study begins with a comprehensive review of the characteristics of low temperature alloys such as SUS 304L, Invar, A5083 and 9% Ni steel that are widely used for LNG storage tanks. Then, the fatigue characteristics of a newly developed low temperature material, 7% nickel steel are investigated. Finally, the fatigue performance of 7% nickel steel is compared with that of 9% nickel steel.


2021 ◽  
Author(s):  
Yinbin Lu ◽  
Chenwei Liang

In the filling and transportation processes of liquefied natural gas (LNG), the safety of LNG storage tanks is compromised because of rollover phenomenon. As such, the rollover factors of LNG in a storage tank should be identified to prevent or weaken the rollover intensity of LNG. In this study, the rollover behavior of LNG in a storage tank is numerically simulated. The density of the two layers in a LNG storage tank is related to temperature in our numerical model. It is found that the greater the significant initial density difference (range of 1-12 kg·m-3) is, the more obvious the LNG rollover will be. A density difference of 7.5 kg·m-3 is found as the critical density difference in the present work. When the initial density difference exceeds the critical density difference, the LNG rollover coefficients increase dramatically. Moreover, an LNG rollover model with two daughter models is proposed, which are divided by the critical initial density difference, i.e., a cubic relationship between rollover coefficients and the initial density difference when the density difference is less than 7.5 kg·m-3 and secondly, a linear relationship between the rollover coefficient and the double exponential functions when the density difference is larger than 7.5 kg·m-3.


Author(s):  
Katarina Simon

Storage tanks are widely used in the oil refinery and petrochemical industry in storing a multitude of different products ranging from gases, liquids, solids, and mixtures. Design and safety concerns have become a priority due to tank failures causing environment pollution as well as fires and explosions, which can result in injuries and fatalities. The chapter illustrates different types of crude oil and oil product storage tanks as well as the risks regarding the storage itself. Considering that the natural gas, in its gaseous state, is stored in underground storages like oil and gas depleted reservoirs, aquifers or salt caverns, and there are numerous publications and books covering the subject in detail, this chapter only illustrates the storage of liquefied natural gas and the risks posed by its storage.


1986 ◽  
Vol 108 (2) ◽  
pp. 475-477 ◽  
Author(s):  
K. M. Kothari ◽  
R. N. Meroney

2012 ◽  
Vol 455-456 ◽  
pp. 406-412 ◽  
Author(s):  
Chun Yan Yan ◽  
Shun Zhen Yang ◽  
Jian Hua Zhao ◽  
Wu Shen Li

Various methods have been introduced to predict postweld hardness of the heat affected zone (HAZ) for 9% Ni steel which is a primary steel adopted in the construction of liquefied natural gas (LNG) storage facilities. Two models were derived for the evaluation of the HAZ hardness, and then validated. The formulae developed in this investigation are sufficient to predict the hardness of the HAZ for 9% Ni steel . For the model using a rule of mixture, it is suggested that the morphology of martensite should be taken into consideration. Since the prediction of hardness depends on the calculation of the critical cooling time and hardness of microstructural constituents, a formula to estimate the hardness of martensite in HAZ was given. For empirical equation relating welding parameters, calculation results were found to give a fairly good description of the postweld HAZ hardness.


Author(s):  
Katarina Simon

Storage tanks are widely used in the oil refinery and petrochemical industry in storing a multitude of different products ranging from gases, liquids, solids, and mixtures. Design and safety concerns have become a priority due to tank failures causing environment pollution as well as fires and explosions, which can result in injuries and fatalities. The chapter illustrates different types of crude oil and oil product storage tanks as well as the risks regarding the storage itself. Considering that the natural gas, in its gaseous state, is stored in underground storages like oil and gas depleted reservoirs, aquifers or salt caverns, and there are numerous publications and books covering the subject in detail, this chapter only illustrates the storage of liquefied natural gas and the risks posed by its storage.


Author(s):  
Zhihao Wang ◽  
Amir Sharafian ◽  
Walter Mérida

Abstract Methane is the primary component of liquefied natural gas (LNG) and a potent greenhouse gas (GHG). The undesired methane emissions across the natural gas supply chain has been proven to worsen the lifecycle GHG emissions from the transportation sector compared with diesel. Therefore, having accurate fast-response models to predict the performance of natural gas infrastructure, such as LNG storage facilities, becomes crucial to minimize methane emissions. In this study, a novel non-equilibrium multi-species thermodynamic model based on the resistance-capacitance network is developed to assess the thermal performance of LNG storage tanks. The accuracy of the non-equilibrium model is validated against the experimental data of a storage tank under dynamic hot gas injection. Then, the model is employed to analyze the performance of two identical vertical and horizontal storage tanks in a refueling station under self-pressurization condition. The results show that the pressure rise in the stationary vertical and horizontal tanks is similar. However, the temperature gradient between the vapor phase and LNG in the horizontal tank is less than that in the vertical tank due to the larger vapor-liquid interface. This feature allows the horizontal tank to reduce the tank pressure faster than the vertical tank under sudden pressure increase.


Sign in / Sign up

Export Citation Format

Share Document