On the dynamic stability of high-speed gas bearings: stability study and experimental validation

2011 ◽  
Vol 2 (2) ◽  
pp. 342-351
Author(s):  
T. Waumans ◽  
J. Peirs ◽  
J. Reynaerts ◽  
F. Al-Bender

For high-speed applications, gas lubricated bearings offer very specific advantages over other,more conventional bearing technologies: a clean and oil-free solution, virtually wear-free operation, lowfrictional losses, wide operating temperature range, etc. However, the principal drawback involved in theapplication of high-speed gas bearings concerns the dynamic stability problem. Successful applicationtherefore requires control of the rotor-bearing dynamics so as to avoid instabilities.After a detailed study of the dynamic stability problem and the formulation of a convenient stability criterium,a brief overview is given of the currently existing bearing types and configurations for improving the stability.In addition, three strategies are introduced: (i) optimal design of plain aerostatic bearings; (ii) modification ofthe bearing geometry to counteract the destabilising effects in the gas film; and (iii) introduction of dampingexternal to the gas film as to compensate for the destabilising effects.These strategies are worked out into detail leading to the formulation of a series of design rules. Theireffectiveness is validated experimentally at a miniature scale. In recent experiments a rotational speed of1.2 million rpm has been achieved with a 6 mm rotor on aerodynamic journal bearings, leading to a recordDN-number of 7.2 million.

Author(s):  
Juerg Schiffmann ◽  
Daniel Favrat

Currently the herringbone grooved journal bearing (HGJB) has applications in the domain of small, low power energy related applications, where high rotational speeds are required for reaching reasonable efficiency and where standard oil lubricated bearings are limited or even unable to operate over the life time required. Furthermore the presence of oil requires auxiliary control systems reducing the overall system efficiency and reliability. High-speed rotors running in hermetic units processing refrigerant vapor require the bearings to operate with this same gas at thermodynamic conditions that are potentially very close to the saturation curve. In this region the usually applied perfect gas theory does not yield valid results when applied to the Reynolds-lubrication equation. Furthermore, depending on the processed gas and its thermodynamic condition, the Knudsen number may reach values where it is advisable to take gas rarefaction effects into account. In applications where the rotor is heavily loaded in terms of mass and inertia, the bearing design highly affects the dynamic stability of the rotor. In order to reach good stability margins, the bearing geometry tends towards low clearances leading to higher power losses. It has to be noted that bearing losses not only deteriorate the overall efficiency, but also as the unit size are getting smaller and smaller, cooling becomes an issue. The narrow groove theory (NGT) is modified in order to take into account the rarefied gas as well as the real gas effects depending on the thermodynamic and physical properties of the processed gas and on its thermodynamic state. The bearing module implementing the modified narrow groove theory allows calculating the stiffness and the damping matrices for a given bearing geometry. It is then linked to a rotor dynamic model that enables to calculate the critical speeds and the corresponding dynamic stability for a given rotor supported on herringbone grooved dynamic gas bearings. The latter module is linked to a multi-objective optimizer based on evolutionary algorithms. In this paper the evolutionary optimizer is used for two objectives: maximizing the stability margin and minimizing the bearing power loss. The optimizer yields in a Pareto curve representing a family of optimum solutions. One has the choice between a solution with a high stability margin but with high bearing losses to get dissipated or vice versa. A low power rotor for a refrigerant gas process illustrates the optimizing procedure discussed in this paper.


2006 ◽  
Vol 128 (3) ◽  
pp. 551-558 ◽  
Author(s):  
Luis San Andrés

Gas film bearings offer unique advantages enabling successful deployment of high-speed microturbomachinery. Current applications encompass micro power generators, air cycle machines, and turbo expanders. Mechanically complex gas foil bearings are in use; however, their excessive cost and lack of calibrated predictive tools deter their application to mass-produced oil-free turbochargers, for example. The present investigation advances the analysis and experimental validation of hybrid gas bearings with static and dynamic force characteristics desirable in high-speed turbomachinery. These characteristics are adequate load support, good stiffness and damping coefficients, low friction and wear during rotor startup and shutdown, and most importantly, enhanced rotordynamic stability at the operating speed. Hybrid (hydrostatic/hydrodynamic) flexure pivot-tilting pad bearings demonstrate superior static and dynamic forced performance than other geometries as evidenced in a high-speed rotor-bearing test rig. A computational model including the effects of external pressurization predicts the rotordynamic coefficients of the test bearings and shows good correlation with measured force coefficients, thus lending credence to the predictive model. In general, direct stiffnesses increase with operating speed and external pressurization, whereas damping coefficients show an opposite behavior. Predicted mass flow rates validate the inherent restrictor-type orifice flow model for external pressurization. Measured coast-down rotor speeds demonstrate very low-friction operation with large system time constants. Estimated drag torques from the gas bearings indirectly validate the recorded system time constant.


2007 ◽  
Vol 129 (4) ◽  
pp. 1020-1027 ◽  
Author(s):  
Xuehua Zhu ◽  
Luis San Andrés

Micro-turbomachinery demands gas bearings to ensure compactness, light weight, and extreme temperature operation. Gas bearings with large stiffness and damping, and preferably of low cost, will enable successful commercial applications. Presently, tests conducted on a small rotor supported on flexure pivot hydrostatic pad gas bearings (FPTPBs) demonstrate stable rotordynamic responses up to 100,000rpm (limit of the drive motor). Test rotor responses show the feed pressure raises the system critical speed (increase in bearing direct stiffness) while the viscous damping ratio decreases. Predictions correlate favorably with experimentally identified (synchronous) direct stiffness bearing force coefficients. Identified experimental gas bearing synchronous damping coefficients are 50% or less of the predicted magnitudes, though remaining relatively constant as the rotor speed increases. Tests without feed pressure show the rotor becomes unstable at ∼81krpm with a whirl frequency ratio of 20%. FPTPBs are mechanically complex and more expensive than cylindrical plain bearings. However, their enhanced stability characteristics and predictable rotordynamic performance makes them desirable for the envisioned oil-free applications in high speed micro-turbomachinery.


Author(s):  
Guan-Chung Ting ◽  
Kuang-Yuh Huang ◽  
Keng-Ning Chang

Bearings for high-speed rotors are the key component of dental handpieces. The friction induced by conventional ball bearings restricts its speed and reduces its efficiency. In order to significantly improve the efficiency of dental handpieces, a mini-type cartridge that integrates a turbine and a spindle with radial aerostatic bearings and axial passive magnetic bearings has been ingeniously designed and realized. Around the rotating spindle, there is a high-pressured air film built up by a pair of radial aerostatic bearings, and magnet rings are applied to create repulsive forces to axially support the rotating spindle. The high-pressured air film comes from the specifically designed separable orifice restrictors, which can be easily and precisely manufactured. Frictionless bearing effect can be achieved by aerostatic principle, and the magnetic principle is applied to create large repulsive force against the axial working force. A tri-directional air inlet is designed to reduce radial loading force of a spindle during working. The modularized form of the magneto-aerostatic bearing allows it to be easily assembled and replaced in the very compact space of a mini-type cartridge. Through analytical simulations with fluid-dynamics software (CFD) and experiments, the magneto-aerostatic bearing is optimized to bring out efficient performance in its limited space. The experiments have verified that its noise level is 15dB lower than the conventional cartridge with ball bearings, and its startup air pressure is reduced from 0.4 bar to 0.1 bar. Under the same operation conditions, the newly developed cartridge with magneto-aerostatic bearings creates twice higher speed than that of the conventional one.


2020 ◽  
pp. 29-33
Author(s):  
S. V. Kondakov ◽  
O.O. Pavlovskaya ◽  
I.D. Ivanov ◽  
A.R. Ishbulatov

A method for controlling the curvilinear movement of a high-speed tracked vehicle in a skid without loss of stability is proposed. The mathematical model of the vehicle is refined. With the help of simulation modeling, a control algorithm is worked out when driving in a skid. The effectiveness of vehicle steering at high speed outside the skid is shown. Keywords: controlled skid, dynamic stability, steering pole displacement, hydrostatic transmission, automatic system, fuel supply. [email protected]


2000 ◽  
Vol 37 (03) ◽  
pp. 146-152
Author(s):  
Eric Thornhill ◽  
Brian Veitch ◽  
Neil Bose

A series of bare-hull resistance and self-propulsion tests were carried out on a 1/8 scale model of a 11.8 m long, waterjet-propelled planing hull in the clear water towing tank at the National Research Council of Canada's Institute for Marine Dynamics. The bare-hull resistance tests, performed with the waterjet inlets closed, spanned a range of eight model velocities and nine ballast conditions consisting of three displacements each with three positions of the longitudinal center of gravity. The hull was then fitted with two model waterjet thrusters and tested over the same speeds and ballast conditions. Dynamic instability, or porpoising, was seen during certain high-speed tests. A discussion of this behavior and its relation to published dynamic stability limits is given.


2020 ◽  
Vol 8 (31) ◽  
pp. 11501-11511 ◽  
Author(s):  
Rui Chen ◽  
Xiubin Xu ◽  
Siyu Peng ◽  
Junmin Chen ◽  
Danfeng Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document