aerostatic bearings
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 11 (23) ◽  
pp. 11462
Author(s):  
Federico Colombo ◽  
Luigi Lentini ◽  
Andrea Trivella ◽  
Terenziano Raparelli ◽  
Vladimir Viktorov

This paper proposes a method to experimentally identify the main modal parameters, i.e., natural frequencies and damping ratios, of an aerostatic spindle for printed board circuit drilling. A variety of methods is applied to the impulse-response function of the spindle in the presence of zero rotational speed and different supply pressures. Moreover, the paper describes the non-linear numerical model of the spindle, which consists of a four-degree-of-freedom (DOF) rigid and unsymmetrical rotor supported by two aerostatic bearings. The main goal of the work is to validate the developed non-linear numerical model through the proposed identification procedure and the performed experimental tests. The comparison proves satisfactory, and the possible sources of uncertainty are conjectured.


2021 ◽  
Vol 11 (22) ◽  
pp. 10791
Author(s):  
Pyung Hwang ◽  
Polina Khan ◽  
Seok-Won Kang

Aerostatic bearings are widely used in high-precision devices. Partial arc annular-thrust aerostatic porous journal bearings are a prominent type of aerostatic bearings, which carry both radial and axial loads and provide high load-carrying capacity, low air consumption, and relatively low cost. Spindle shaft tilting is a resource-demanding challenge in numerical modeling because it involves a 3D air flow. In this study, the air flow problem was solved using a COMSOL software, and the dynamic coefficients for tilting degrees of freedom were obtained using finite differences. The obtained results exhibit significant coupling between the tilting motion in the x-and y-directions: cross-coupled coefficients can achieve 20% of the direct coefficient for stiffness and 50% for damping. In addition, a nonlinear behavior can be expected, because the tilting motion within 3°, tilting velocities within 0.0012°/s, and relative eccentricity of 0.2 have effects as large as 20% for direct stiffness and 100% for cross-coupled stiffness and damping. All dynamic coefficients were fitted with a polynomial of eccentricity, tilting, and tilting velocities in two directions, with a total of six parameters. The resulting fitting coefficient tables can be employed for the fast dynamic simulation of the rotor shaft carried on the proposed bearing type.


2021 ◽  
Vol 11 (22) ◽  
pp. 10604
Author(s):  
Jianlong Yin ◽  
Jing Yu ◽  
Pengfei Cao ◽  
Dongsheng Li ◽  
Xiaoyan Shen ◽  
...  

The definition of air resistance is nonuniform when analyzing the bearing capacity, stiffness, and stability of an orifice throttling aerostatic restrictor. In this study, a capillary tube similar to the inlet section of an aerostatic restrictor is used as the research object, and the Bernoulli equation under adiabatic conditions is established. Through an experiment, the pressure and temperature of the capillary tube inlet and outlet and the flow through the capillary tube are measured. Based on the air resistance definition, the empirical formula of the coefficient k is obtained, and the theoretical air resistance of the capillary path is calculated. The relative error between the theoretical air resistance and experimental air resistance is kept within 10%. The comparison results verify the accuracy of the air resistance theory and provide a basis for the subsequent establishment of a universal definition of air resistance. Subsequently, air resistance can be used to design aerostatic bearings and help improve their characteristics.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1698
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Yuri Pikalov ◽  
Lilia Strok ◽  
...  

Due to their vanishingly low air friction, high wear resistance, and environmental friendliness, aerostatic bearings are used in machines, machine tools, and devices that require high accuracy of micro-movement and positioning. The characteristic disadvantages of aerostatic bearings are low load capacity, high compliance and an increased tendency for instability. In radial bearings, it is possible to use longitudinal microgrooves, which practically exclude circumferential air leakage, and contributes to a significant increase in load-bearing capacity. To reduce compliance to zero and negative values, inlet diaphragm and elastic airflow regulators are used. Active flow compensation is inextricably linked to the problem of ensuring the stability of bearings due to the presence of relatively large volumes of gas in the regulator, which have a destabilizing effect. This problem was solved by using an external combined throttling system. Bearings with input flow regulators have a number of disadvantages-they are very energy-intensive and have an insufficiently stable load capacity. A more promising way to reduce compliance is the use of displacement compensators for the movable element. Such bearings also allow for a decrease in compliance to zero and negative values, which makes it possible to use them not only as supports, but also as active deformation compensators of the technological system of machine tools in order to reduce the time and increase the accuracy of metalworking. The new idea of using active flow compensators is to regulate the flow rate not at the inlet, but at the outlet of the air flow. This design has the energy efficiency that is inherent to a conventional bearing, but the regulation of the lubricant output flow allows the compliance to be reduced to zero and negative values. This article discusses the results of a theoretical study of the static and dynamic characteristics of a two-row radial aerostatic bearing with longitudinal microgrooves and an output flow regulator. Mathematical modeling and theoretical study of stationary modes have been carried out. Formulas for determining static compliance and load capacity are obtained. Iterative finite-difference methods for determining the dynamic characteristics of a structure are proposed. The calculation of dynamic quality criteria was carried out on the basis of the method of rational interpolation of the bearing transfer function, as a system with distributed parameters, developed by the authors. It was found that the volumes of the microgrooves do not have a noticeable effect on the bearing dynamics. It is shown that, in this design, the external combined throttling system is an effective means of maintaining stability and high dynamic quality of the design operating in the modes of low, zero and negative compliance.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1492
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Lilia Strok ◽  
Yuri Pikalov ◽  
...  

The disadvantage of aerostatic bearings is their low dynamic quality. The negative impact on the dynamic characteristics of the bearing is exerted by the volume of air contained in the bearing gap, pockets, and microgrooves located at the outlet of the feeding diaphragms. Reducing the volume of air in the flow path is a resource for increasing the dynamic quality of the aerostatic bearing. This article presents an improved design of an axial aerostatic bearing with simple diaphragms, an annular microgroove, and an elastic suspension of the movable center of the supporting disk. A mathematical model is presented and a methodology for calculating the static characteristics of a bearing and dynamic quality indicators is described. The calculations were carried out using dimensionless quantities, which made it possible to reduce the number of variable parameters. A new method for solving linearized and Laplace-transformed boundary value problems for transformants of air pressure dynamic functions in the bearing layer was applied, which made it possible to obtain a numerical solution of problems sufficient for practice accuracy. The optimization of the criteria for the dynamic quality of the bearing was carried out. It is shown that the use of an elastic suspension of the support center improves its dynamic characteristics by reducing the volume of compressed air in the bearing layer and choosing the optimal volume of the microgroove.


2021 ◽  
pp. 107111
Author(s):  
Jianbo Zhang ◽  
Dongjiang Han ◽  
Zhongliang Xie ◽  
Chao Huang ◽  
Zhushi Rao ◽  
...  

Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 55
Author(s):  
Federico Colombo ◽  
Luigi Lentini ◽  
Terenziano Raparelli ◽  
Andrea Trivella ◽  
Vladimir Viktorov

Even though the behavior of aerostatic bearings has for long been the topic of extensive research, there are still many aspects that require further investigation. Among these, the identification of the discharge coefficients is one the most crucial. This paper presents a hybrid method to identify the discharge coefficients of aerostatic bearing orifices. The method is termed as hybrid since it exploits experimental data and the equations of the analytical model of a circular and centrally fed aerostatic pad. The obtained results demonstrate the accuracy of the method. The proposed method further offers practical advantages compared to the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document