scholarly journals Validation of a finite element model for fracture mechanics specimens

2012 ◽  
Vol 3 (1) ◽  
pp. 8-18
Author(s):  
M. Cauwelier ◽  
J. Maelfait ◽  
M. Verstraete ◽  
S. Hertelé ◽  
K. Van Minnebruggen ◽  
...  

Single parameter formulations have shown to be insufficient to describe constraint effects infracture mechanics specimens. This has lead researchers to a two parameter approach like the J-Q theory.In order to investigate constraint effects, the authors have developed a generic finite element model. Priorto drawing conclusions this model must first be validated, which is the topic of this paper. This validationhas been done by comparing analytical expressions of the J-integral with those obtained from theperformed simulations. The compared geometries were center cracked tension (CCT) and double edgenotched tension (DENT) fracture mechanics specimens. The results showed good agreement with theanalytical expressions and, as such, the model can now be confidently applied to determine values of the Jintegral. This is a first step towards evaluating two parameter J-Q constraint.

2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


2007 ◽  
Vol 534-536 ◽  
pp. 1441-1444 ◽  
Author(s):  
Man Soon Yoon ◽  
Y.G. Choi ◽  
Soon Chul Ur

The electromechanical properties of a newly proposed 3-dimensional piezoelectric actuator have been investigated. Especially, the effects of 3-dimensional geometry on the maximum tip displacement were carefully investigated. As a result, it was found that the maximum strain of the 3-dimensional piezoelectric device was significantly enhanced up to 4.5 times higher than that of a disk shape device. This data was in good agreement with the finite element model analysis of strains and vibration modes. Moreover, the field -induced displacement stability of dome-shaped 3- dimensional piezoelectric actuator at various ac freguencies was superior to Rainbow actuator.


2014 ◽  
Vol 496-500 ◽  
pp. 601-604
Author(s):  
Jing Wang ◽  
Yong Wang ◽  
Ying Hua Liao

In this paper, the modal of motorcycle frame is analyzed by using the analytic method and experimental method. The results show that the dynamic properties of the finite element model are in good agreement with the experiment and the finite element model was reliable and accurate.


Author(s):  
Zahari Taha ◽  
Mohd Hasnun Arif Hassan

The soccer ball is one of the important pieces of equipment in the game of soccer. It undergoes various forms of impact during the game. In order to numerically investigate the occasions of ball impact such as soccer heading, a validated finite element model of a soccer ball is required. Therefore, a model was developed incorporating material properties obtained from literature. To ensure the accuracy of the model, it was validated against an established soccer ball model and experimental data of the coefficient of restitution, contact time, longitudinal deformation and reaction force. In addition, a parametric study of the mesh density was also performed to determine the optimal number of elements. The developed soccer ball model was found to be in a good agreement with the literature and experimental data. This suggests that, the soccer ball model is capable of replicating the impacts of interest. This article details the development of the model and the validation processes.


Author(s):  
M Bouazizi ◽  
T Lazghab ◽  
M Soula

Stringers are stiffening members of pressurized aircraft fuselage. They provide support to the fuselage’s skin. A new stringer grid concept is proposed for conventional aircraft fuselage. Optimization is used to find the hexagonal grid that best replaces the original while keeping the same total stringer length. A finite element model is built to analyze the optimal hexagonal grid stiffened structure and compare it with the original orthogonally stiffened structure in terms of eigenfrequencies and static response to external loading. The finite element model is validated through Flugge’s analytical expressions for stiffened shells. Results show that the hexagonal grid stiffened structure yields higher eigenfrequencies with stresses and displacements comparable with that of the original structure.


2014 ◽  
Vol 607 ◽  
pp. 405-408 ◽  
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Quan Cheng Peng

The gear-shaft-bearing-housing coupled finite element model of marine gearbox was established by using the truss element, the spring element and the tetrahedral element. The modal of gearbox was analyzed by using the ANSYS software. Then through the experimental modal analysis, the natural frequencies of gearbox are obtained. Compare the experimental results with the numerical results, it shows good agreement.


2014 ◽  
Vol 1659 ◽  
pp. 55-61
Author(s):  
Ryan M. Pocratsky ◽  
Maarten P. de Boer

ABSTRACTFixed-fixed beams are ubiquitous MEMS structures that are integral components for sensors and actuation mechanisms. However, residual stress inherent in surface micromachining can affect the mechanical behavior of fixed-fixed structures, and even can cause buckling. A self-tensioning support post design that utilizes the compressive residual stress of trapped sacrificial oxide to control the stress state passively and locally in a fixed-fixed beam is proposed and detailed. The thickness and length of the trapped oxide affects the amount of stress in the beam. With this design, compression can be reduced or even converted into tension. An analytical model and a 3D finite element model are presented. The analytical model shows relatively good agreement with a 3D finite element model, indicating that it can be used for design purposes. A series of fixed-fixed beams were fabricated to demonstrate that the tensioning support post causes a reduction in buckling amplitude, even pulling the beam into tension. Phase shifting interferometry deflection measurements were used to confirm the trends observed from the models. Controlling residual stress allows longer fixed-fixed beams to be fabricated without buckling, which can improve the performance range of sensors. This technique can also enable local stress control, which is important for sensors.


2018 ◽  
Vol 85 (6) ◽  
Author(s):  
Simon P. H. Skovsgaard ◽  
Henrik Myhre Jensen

Failure by steady-state kink band propagation in layered materials is analyzed using three substantially different models. A finite element model and an analytical model are developed and used together with a previously introduced constitutive model. A novel methodology for simulating an infinite kink band is used for the finite element model using periodic boundary conditions on a skewed mesh. The developed analytical model results in a transcendental equation for the steady-state kink band propagation state. The three models are mutually in good agreement and results obtained using the models correlate well with the previous experimental findings.


2013 ◽  
Vol 208 ◽  
pp. 63-69 ◽  
Author(s):  
Mateusz Romaszko ◽  
Marcin Węgrzynowski

The study covers the modeling three-layered beam incorporating a magnetorheological (MR) fluid. The beam finite element model was created using the ANSYS software. The beam comprises two outer layers made of aluminium and MR fluid layer in between, sealed with silicone rubber. Interactions of the magnetic field are taken into account by varying the parameters of the finite elements. Data required for identification were collected from results of measurement of the beams free vibrations. The identification procedure assumes the good agreement between the frequencies of the beams free vibrations and dimensionless damping coefficients obtained from research and computation data. The validity of proposed beams finite element model was also investigated. Finally some numerical results were presented.


2008 ◽  
Vol 594 ◽  
pp. 175-180
Author(s):  
Hsiang Chen Hsu ◽  
Hui Yu Lee ◽  
Wen Lo Shieh

A three-dimensional finite element model of CMOS image sensor QFN packaging using ANSYS codes is developed to investigate the solder joint reliability under thermal cycle test. The predicted thermal-induced displacements were found to be very good agreement with the Moiré interferometer experimental in-plane deformations. The developed finite element model is then applied to predict fatigue life of Sn4.0Ag0.5Cu, Sn3.5Ag0.5Cu and Sn3.9Ag0.6Cu alloys based on JEDEC standard JESD22-A104. In order to save computational time and produce satisfactory results in the region of interest, an independent more finely meshed so-called submodel scheme based on cut-boundary displacement method is generated. The mesh density for different area ratio of refinery/coarse model was verified and the results were found to be good agreement with previous researches. The modified Coffin-Manson equation and strain energy density based equation are applied to evaluate the reliability of SnAgCu alloys. A series of comprehensive parametric studies were conducted in this paper.


Sign in / Sign up

Export Citation Format

Share Document